
Part One

Pragmatic Versus Structured

Computer Programming

A Theory Beyond Criticism (1975-1983)

(c) Copyright Steve Meyer, 1983, 1989. All Rights Reserved

1

Chapter 1

Introduction
1.1 Background

It is not hard to understand why a new science such as computer programming would adopt the
methods and goals of mathematics which is highly successful and whose roots date back to antiquity. The
use of computers in solving mathematical problems and the mathematical training of many senior computer
scientists only serve to increase this likelihood. Since formal mathematics in the guise of metamathematics
and logic has dominated mathematical thought throughout this century, it is also not surprising that
computer science would adopt a formal methodology. This methodology is called structured programming
and has until recently been almost universally accepted.

This thesis maintains that structured programming is incorrect in the sense of being both problem
ridden and detrimental to the development of new programs. It argues that computer programming is a
pragmatic activity in which progress requires problem and individual programmer specific methods (tricks).
Methods are indicated not only by the specific nature of the problem or subproblem being solved, but also
by the background knowledge in which the problem is embedded and the aptitudes and background of the
individual programmer.

The argument is that while mathematics is well suited to solving problems involving abstraction and
generalization, computers are well suited to problems which can be reformulated or tailored to allow the
use of computational tricks. Of course, the programming solutions to mathematical problems will still
involve normal mathematical methods, and where formal algorithm analysis is possible, the analysis may
involve formal proofs. The point is that the computer solution to large and complicated problems is not
formal and cookbook like in the structured programming sense.

1.2 The Nature of Structured Programming

Structured programming offers methods for all three phases of the computer programming process:
design, verification, and implementation. According to structured programming, programs (or algorithms)
are designed by means of refinement which is a top down design or improvement process in which an
abstract conception is systematically transformed into an actual program. Verification of previously written
programs is guaranteed by formal mathematical proofs. Although, it is sometimes claimed the proof and
the implementation must go hand in hand. Structured programming guides the implementation process by
providing stylistic guidelines and programming language features which are claimed to aid the refinement
and verification processes, and by forbidding other features which are claimed to be either mathematically
unsound or not systematic.

1.3 Argument Overview

This thesis contains various types of scientific and philosophical evidence against two of the three
facets of structured programming. It also presents by means of examples an alternative pragmatic and
problem specific approach to computer programming which is free of cookbook like methods.

It is often difficult to find evidence against abstract methods since they almost always have a
psychological component and are almost never specified explicitly. In the case of structured programming,
it has been even more difficult since, when this thesis was begun in the middle 1970s, structured
programming was universally accepted and commonly held to be beyond criticism. In addition, structured
programming’s area of applicability is not some objective physical measurement but rather the product of
human problem solving. In order to argue against such a theory, it is first necessary to establish that its
correct application still leads to mistakes or difficulties.

Chapter two establishes that at least the refinement part of structured programming has problems. An
application of refinement to a simple programming problem in which a founder of structured programming
ran into difficulties is discussed. Since the difficulties occurred in a graduate level textbook, in which the
author himself claimed to be illustrating the nature of the principle, the failure must be caused by the
unsoundness of the technique.

2

November 8, 2001 Draft Introduction

Another approach to arguing against a method is by convincing philosophical arguments. Chapter
three contains a dialogue in which various computer scientists attempted to defend structured programming
by explaining why the material in chapter two should not be published in the scientific journal titled
Communications of the ACM. This gives me an opportunity both to rebut their arguments and to explain
my pragmatic alternative. Such a verbatim dialogue is advantageous since it prevents any participant from
claiming that the disputed claim is either not part of structured programming or not that person’s viewpoint.
It also offers a vehicle for rebuttals and counter-rebuttals.

Chapter three attempts to show that the followers of structured programming do not see it as open to
possible refutation and are not willing to specify conditions under which they would abandon it. This
argument is strengthened by the seeming unwillingness of CACM editors to base editorial decisions solely
on technical content.

Chapter four argues against verification by means of program correctness proofs. It provides a list of
programs and problems which should be provable if verification is to retain any promise.

Finally, it is not sufficient to simply find flaws in a widely held theory. Some alternative must be
presented. The problem in presenting alternative methods in the area of human problem solving is that
there is a tendency to interpret any concrete approach as a new and improved formal method which simply
has replaced the old flawed one. The real alternative is no universal, problem independent method, but
rather that any particular problem must be solved using an approach dictated by the nature of the problem.
The alternative pragmatic approach is illustrated in chapter two by showing an improved solution to the
Dutch national flag problem, and in chapter five by presenting the solution to an economically important
subproblem of the integrated circuit gate array placement problem. An attempt has been made in both
cases to explain the relevant problem specific knowledge. Chapter five also contains a brief explanation of
why the approach used to place CMOS (a type of integrated circuit manufacturing technology) gate arrays
does not work particularly well for ECL array placements.

The reader who expects a tightly organized and linear argument will be disappointed. Each main
chapter was written to present the entire argument and to stand alone. The organization is chronological
with each chapter written, at least in part, to answer objections raised with respect to previous ones. The
reader only interested in new algorithms should read chapters two and five while the reader only interested
in philosophy should read chapters three and four.

1.4 Omission of Stylistic Issues

The third phase of structured programming which involves programming style and language choice is
not discussed here. The value of structured programming based languages is currently being decided in the
programming laboratory (work place). Practicing programmers and their institutions are carrying out the
test by choosing between languages such as Pascal or ADA which embody and enforce the stylistic tenets
of structured programming and C which does not. It seems that C with its pragmatic features is prevailing,
but it may be too early to tell. For an interesting comment on this question see appendix A.

1.5 Publication History

Most of the material in this thesis was written to appear somewhere else and has therefore been left
as close to the original form as possible. Changes have been limited to the correction of obvious
typographical errors and to consistent formatting. In the case of cited references, if a more accessible or
improved version has become available, that reference is used.

Chapter two was submitted to the CACM and appeared as Zilog Corporation technical report number
five. A new postscript discussing recent work on the Dutch national flag problem has been included.
Chapter three is a verbatim transcript of an exchange with various ACM officials over the publication of
chapter two. Names have been omitted to emphasize the official nature of the exchange. Chapter four
appeared in the ACM SIGSOFT newsletter. It also contains a postscript discussing related current papers.
Chapter five appeared in the proceedings of the 1983 IEEE Conference on Computer Design VLSI in
Computers (ICCD), but the postscript discussing ECL gate array placement did not appear in those
proceedings.

3

Chapter 2

A Failure of Structured Programming
2.1 Introduction

Refinement lies at the heart of structured programming. Algorithms are designed using stepwise
refinement,1 data structures are chosen using static refinement,2 and algorithm efficiency is improved using
optimizing refinement.3 Refinement is a top down program design or improvement process in which an
abstract conception is systematically transformed into an actual program.4 This paper examines a failure of
optimizing refinement. It indirectly casts doubt on structured programming due to the important role
refinement plays in structured programming and the similarity of all types of refinement.

The unsuccessful refinement occurred in Professor Dijkstra’s attempt to improve a solution to the
Dutch national flag problem.5 It involved the transformation of a short unrefined program into a longer but
no more efficient one. Situations were identified in which the unrefined program performed extra
computation, but in handling those situations, decisions were made which necessitated increased
computation in other cases. The overly rigid nature of refinement seems to have prevented the discovery of
a truly more efficient solution. Such a solution, discovered by considering a simplified version of the
problem, is presented.

2.2 The Problem

The problem involves exchanging colored pebbles within a row of buckets to satisfy a given
condition. Input is a row of N buckets each of which is filled with a colored pebble chosen from the three
colors: red, white, or blue. The pebbles must be rearranged so all red pebbles are contiguous and to the left
of all blue and white pebbles. The white pebbles must also be contiguous and lie to the left of all blue
pebbles (this happens to be the order of colors on the Dutch national flag). The solution must be written
exclusively in terms of two primitives:

buck(i): This function returns the color of the pebble in bucket i.

swap(i,j): This procedure exchanges the pebble in bucket i with the one in bucket j.

Dijkstra specifies a number of additional constraints.6 The buck(i) operation may be used on a given pebble
only once since the operation is assumed to be so time consuming that any other solution would be
unacceptably slow. The normal two-step approach of storing the color of each pebble in an array and then
outputting a sequence of swap operation, possibly using some kind of Quicksort,7 is ruled out. Only simple
variables with a range not much larger than N are allowed. Finally, giv en programs with the "the same
degree of complication, the one that needs (on the average) the fewest swaps is to be preferred".8

This problem is not very interesting in itself. None of the solutions are particularly deep, and the
problem has been so constrained that it is hard to imagine it ever arising in real programming. Yet, it is
interesting because of the light it sheds on structured programming. It was published to investigate "a more
refined solution"9 which Professor Dijkstra believed to be "elegant".10 It is complicated enough to provide
a real test for refinement, yet simple enough to be easily described and results in procedures short enough to
be shown in their entirety. Finally, the wide acceptance of structured programming seems mainly due to
philosophical arguments for its basic tenets11 rather than to any careful examination of the results of its

1. Wirth[1971b], p. 221.
2. Dijkstra[1972a], p. 59.
3. Ibid., p. 43.
4. Ibid., p. 41.
5. Dijkstra[1976], pp. 111-116.
6. Ibid., p. 112.
7. Cf. Hoare[1962], 10-15.
8. Dijkstra[1976], p. 112.
9. Ibid., p. 114.
10. Ibid., p. 117.
11. Dijkstra[1972b], 859-865.

4

November 8, 2001 Draft A Failure of Structured Programming

application. This problem allows such an examination to be carried out.

2.3 The First Solution

The unrefined solution requires the observation that there are really four kinds of buckets: buckets
known to contain pebbles of one of three colors and uninspected buckets. The buckets can be divided into
four regions with the unexamined region somewhere in the middle. The unexamined region begins as the
entire set of buckets and gradually disappears. Notice the boundary variables always point to the next place
to put a pebble of the appropriate color. During execution of the program the row of buckets might look
like:

--
|examined red |unexamined |examined white |examined blue |
--
1 r w b N

where the following conditions are satisfied:

1 <= k < r the kth bucket contains a red pebble

r <= k <= w the kth bucket contains a pebble whose
color is unknown

w < k <= b the kth bucket contains a white pebble
the kth bucket contains a blue pebble

The program examines the wth bucket and puts its pebble into the appropriate region. It requires on the
av erage 2/3 N swaps. Professor Dijkstra gives the solution shown in figure 1.12

procedure dutch_national_flag;
var b,r,w: integer;

begin
r := 1; b := N; w := N;
while w <= r do

case buck(w) of
red: begin swap(r,w); r : = r + 1; end;
white: w := w - 1;
blue:

begin swap(w,b); w := w - 1; b := b - 1; end;
end

end;

Figure 1. Simple DNF Program
This program is clearly simple but may do extra swapping. For example, if all pebbles are red, it will
execute N swaps when none are required. It would also be advantageous to place two pebbles with one
swap.

2.4 Dijkstra’s Refined Solution

Dijkstra discovered his solution by refining the first solution. He claims to have used the following
thought process:13

12. Dijkstra (Ibid., p. 114) published this program in his own non-deterministic programming language. I hav e used a slightly
modified version of Pascal (Wirth[1971a], pp. 35-63) which I think makes the paper easier to understand.

This procedure assumes various objects have already been defined such as the type color and the value of N.

As Professor Dijkstra observed, it is important to notice that the solution which examines the rth bucket and moves left to
right requires more swaps since blue pebbles require two swaps.

13. Ibid., p. 114-116.

5

November 8, 2001 Draft A Failure of Structured Programming

1. He notices that unnecessary swaps of red pebbles can occur.

2. He modifies the algorithm to move the boundary of known reds (r) to the right as much as possible
without swapping.

3. He notices that the red boundary may have reached the boundary of known whites (r = w) and
decides to handle that case immediately with a case statement similar to the one in his first solution.

4. He notices that when r < w and a non-red pebble is encountered (at r), some other pebble must be
inspected or the algorithm reduces to the inefficient one which just moves from left to right (see
footnote 12. above).

5. He chooses to inspect the one in bucket w.

6. He sees that if the pebble in the wth bucket is white, the algorithm should attempt to move the
known white boundary (w) until finding a non-white pebble or until w = r + 1.

7. The two inspected pebbles which must be in different buckets (from number 3 above) need to be
handled. There are two possible colors in bucket r (white or blue) and all three are possible in
bucket w. There are then six cases to handle, but the two cases involving a white pebble in bucket w
only occur when w = r + 1.

8. He decides to place the pebble originally in bucket w first and make sure the pebble which was in
bucket r ends up in the new wth bucket.

See figure 2 for a straight translation of Dijkstra’s solution to Pascal.14 Dijkstra’s refined solution requires
on the order of 2/3 N swaps which is exactly the number required by his unrefined solution and 1/9 N
swaps more than my solution given an even distribution of colors. No matter how large N becomes, the
improvement of Dijkstra’s refined solution over his first solution is always less than 1/2 of one swap.15

Dijkstra’s refined solution handles the unlikely case of long strings of red or white pebbles more efficiently
than the unrefined algorithm, and sometimes correctly places two pebbles with one swap, but nullifies this
improvement by swapping uninspected pebbles which must later be swapped back to their proper region.

Dijkstra’s refinement process allows him to notice that more than one pebble must be placed at a
time, but he lacks any guiding principle for doing the placing. He errs at step 8 above. He should handle
pairs of buckets but instead decides to first do something with bucket w and then do something with bucket
r. As long as bucket w contains a red or white pebble his approach is good, but if the pebble in bucket w is
blue, the refined algorithm places the blue pebble in its proper place, but then moves w one to the left and
swaps whatever is in the new bucket w (it has not been inspected) with the pebble in bucket r. If the pebble
in the new uninspected bucket w is blue or white, his algorithm makes two extra swaps. If it is white, it
gets swapped into bucket r and swapped back the next time through. If it’s blue, it goes to r then back to w
and finally to b, but one swap would have been needed in any case.

Not only is the refined algorithm inefficient and complicated, but also the program written to express
it is longer than necessary. The code for the first case statement which is executed only when w = r after
skipping over red pebbles (see figure 2) is almost exactly duplicated in the last case statement of the
program. The first case statement could be completely eliminated by moving it outside its guarded block
and by adding code to handle the colr = red case. This would considerably shorten the program without
changing the algorithm. It is impossible to determine whether this program’s lengthly style is related to the
use of refinement.

2.5 Another Solution

Dijkstra proceeded by refinement. I proceeded by trying to understand the problem better. This
solution was discovered by considering a simpler problem with pebbles of only two colors (red and white)
and extending that solution to handle three colors.16 It repeats the following three steps until all the pebbles

14. Professor Dijkstra read an earlier version of this paper and pointed out that I had misinterpreted his description of how to
compose the refined program. I am grateful to him for sending me the version which appears here.

15. McMaster[1979], 842-846.
16. The idea to consider the two color case first arose during a discussion with Dana Angluin, Larry, Ruzzo, and Amiram Yehudai.

6

November 8, 2001 Draft A Failure of Structured Programming

procedure dutch_national_flag;
var b,r,w: integer; colr,colw: color;

begin
r := 1; b := N; w := N;
while r <= w do

begin
colr := buck(r);
while (colr = red) and (r < w) do

begin r := r + 1; colr := buck(r) end;
if r = w then

case colr of
red: r := r + 1;
white: w := w - 1;
blue:
begin swap(w, b); w := w - 1; b := b - 1; end

end;
if r < w then

begin
colw := buck(w);
while (colw = white) and (r + 1 < w) do
begin w := w - 1; colw := buck(w); end;

case colw of
red: begin swap(r, w); r := r + 1; end;
white: w := w - 1;
blue: begin

swap(w, b); w : = w - 1; b := b - 1;
swap(r, w);

end
end;
case colr of

white: w : = w - 1;
blue:

begin swap(w, b); w := w - 1; b := b - 1 end
end

end
end

end;

Figure 2. Dijkstra’s Refined Program
have been inspected (this can occur during steps 1 or 2):

1. Start from the left and inspect pebbles until a non-red one is found.

2. Start from the right and inspect pebbles until a non-white one is found.

3. Swap the two pebbles and continue with step 1 from where step 1 and step 2 left off.

This algorithm is optimal. Consider the sum of the distance of red pebbles from the left end. Each swap
reduces this sum by the maximum possible amount.

This algorithm is easily modified to handle blue pebbles. If a blue pebble is found while looking for
a non-white one, the blue one can be swapped with the white one at the blue white boundary and step 2 can
be repeated from that point. This insures that when the algorithm gets to step 3, the non-white pebble is
red. There are then 2 cases:

[white, red] simply swap as in the 2 color algorithm

[blue, red] two swaps will place both pebbles in their correct regions (swap(r,w) and swap(w,b))

Notice that a red or white pebble is already in its proper place. This solution requires on the order of
5/9 N swaps.17 See figure 3 for a possible Pascal procedure.18

7

November 8, 2001 Draft A Failure of Structured Programming

procedure dutch_national_flag;
var b,r,w: integer; colr,colw: color;

begin
r := 1; b := N; w := N;
while w >= r do

begin
for r := r to w do

begin
colr := buck(r);
if colr <= red then goto skip_whites

end;
return;

skip_whites:
for w := w downto r + 1 do

begin
colw := buck(w);
if colw = blue then

begin swap(w,b); b := b - 1 end
else if colw = red then goto make_swaps

end;
if colr = blue then swap(r,b);
return;

make_swaps:
swap(r,w);
if colr = blue then

begin swap(w,b); b := b - 1; end;
r := r + 1; w := w - 1;

end;
end;

Figure 3. More Efficient Program

2.6 Conclusion

In my opinion, this failure is no special case. It is not the one exception to a workable design
method. The Dutch national flag problem was created by one of the originators of structured programming
to illustrate refinement.19 Therefore, it plays a paradigmatic role in the elucidation of refinement and even
one such failure casts doubt on the whole method.

If one can make a useless refinement in this simple and artificially constrained problem, it is hard to
imagine how refinement could be successfully used in complex situations. The suggestion that one try to
improve some idea is certainly valuable, and in many cases inexperienced programmers need a concrete
starting point, but refinement leads to difficulties because it is a far too restricted approach for general use.
Structured programming has taken a piece of good advice and turned it into an inflexible design rule. In
this example, it caused a good programmer to only think along a few specific lines instead of searching for
the new insight which would have allowed the discovery of a more efficient solution.

The point of this paper has been eloquently expressed by Feyerabend in a book on rationalism and
science.

17. Ibid.
18. The reader may have noticed I have taken some liberty with Pascal as it is defined in the Pascal report (Wirth[1971a], pp.

35-63). n addition to a few cosmetic changes, I have added identifier labels and return statements, and assume for loop index
variables are defined outside their loop and upon termination have a value one past the final value. I find these changes
important for my style of programming.

19. Dijkstra[1976], p. 114.

8

November 8, 2001 Draft A Failure of Structured Programming

The idea that science can, and should, be run according to fixed and universal rules, is both
unrealistic and pernicious. It is unrealistic for it takes too simple a view of the talents of man and
the circumstances which encourage, or cause, their development. And it is pernicious, for the
attempt to enforce the rules is bound to increase our professional qualifications at the expense of our
humanity. In addition, the idea is determental to Science, for it neglects the complex physical and
historical conditions which influence scientific change. It makes our science less adaptable and more
dogmatic: every methodological rule is associated with cosmological assumptions, so that using the
rule we take it for granted that the assumptions are correct.20

2.7 Postscript

2.7.1 DNF Algorithm Efficiencies

This paper resulted in a number of publications one of which includes a possibly improved algorithm.
Professor Bitner21 discovered and analyzed an algorithm which guesses that pebbles are exactly evenly
distributed (1/3N of each color) and immediately starts placing each pebble into its expected region. Under
the condition of an even distribution of colors, it clearly produces a more efficient algorithm (10/27N versus
5/9N). The possible problem with this approach is that the solution produces an average case improvement
for one particular distribution while not improving the worst case (still 2/3N) and results in a program three
times as long.22 I actually briefly (too briefly?) considered the guess approach but no practical programmer
would bet on such regular data. A real program must somehow balance the conflicting requirements of
av erage case performance, worst case performance, measured performance, and finally program size.

Bitner also discovered a method to allow the simulation of an array for storing the color of each
pebble using only a small number of extra memory locations (called scouts). This effectively allows more
than two pebbles to be inspected at once. He showed that the guess algorithm using scouts asymptotically
approaches the average case optimum of 1/3N.
The average case results are:

1. asymptotic guess algorithm with scouts - 1/3N.

2. guess algorithm without scouts - 10/27N.

3. two pass binary algorithm which violates one of Dijkstra’s constraints (see 3.12) - 7/18N.

4. my extended binary algorithm - 5/9N.

5. Simple 12 line algorithm - 2/3N.

Tw o other analyses of Professor Dijkstra’s refined algorithm appeared as preliminary research
reports.23 More recently Professor Dijkstra discussed the DNF problem from a different perspective in his
book of selected writing.24

2.7.2 Defenses of Refinement

Even though this chapter was never published, Professor Floyd seems to attempt to answer the
objections it raises in the part of his turing lecture that defends refinement as a correct paradigm.25 He
defends refinement and rule like knowledge while agreeing that structured programming may be too
narrow.26 He also thinks A Discipline of Programming is not one the better expositions of structured
programming (see his 1977 review of that book).27 He seems to be defending the concept of rule like
knowledge and therefore argues for the possibility of artificial intelligence (but see Lighthill’s skeptical
report on AI).28

20. Feyerabend[1975], p. 295.
21. Bitner[1982], pp. 243-262.
22. Ibid., p. 259-261.
23. Cf. Jonassen[1977] and Gotshalks[1978].
24. Dijkstra[1982], pp ??.
25. Floyd[1979], pp. 455-460.
26. Ibid., p. 456.
27. Floyd[1977], p. 785.

9

Chapter 3

A Dialogue on Structured Programming
3.1 First Version Acknowledgement Letter

From: Editor 1

To: Author

Date: January 18, 1977

Since [Berkeley Professor] was one of those who provided you with advice on this paper, I will
accept it and process it. Please tell [Berkeley Professor] that I am doing this, as it is clearly in [Berkeley
Professor’s] area of our joint editorship! If [Berkeley Professor] wishes to take over, I will send [Berkeley
Professor] the file immediately.

The paper illustrates a point on which I have felt much as you do for some time, and I hope that does
not introduce too much bias in favor of it! One matter of definition I have nev er understood is this: If one
views the stepwise refinement abstraction process as the creation of an "abstract tree," then clearly
programming by refinement means that one successively adds material to the frontier of the partially
formed tree. This is clearly highly non-"context free" in the sense that one uses insights gained from the
parts of the tree already constructed to add nodes to the frontier. (An example is Dijkstra’s account of the 8
queens problem, in which the evolving program established the need for data structures necessary to hold
information about the diagonals). Nevertheless, the rules of the game are still clear.

Now comes the fly in the ointment. Some people (e. g. Dan Bobrow) say that it is fair to first (1)
judiciously select high-level data structures, (2) interface routines for these data structures, and (3) complex
procedures.

The abstraction tree is shallower than before, because nonprimitive data operations and procedure
calls lie at its frontier. In short, the tree may be put together so that preconstructed subtrees are attached as
leaf nodes.

What puzzles me is whether (1) this is really programming by refinement, and (2) whether any style
whatever cannot be dressed up to appear to be programming by refinement, i.e., whether refinement has
much meaning at all.

Of course, one can hedge one’s bets, and hypothesize that most of the process of program creation -
the least creative part - is authentically top-down, and some bottom-up aspects - frequently the most
creative - may be systematized by inventing complex data structures and/or procedures, and then seeing
how they work into the top down process, changing both if necessary as one goes along. Maybe this
weakened form of programming by refinement describes what people really do, but if so, it certainly does
not have anything like the simplicity claimed by its proponents.

I would be glad to hear your reactions. In the meantime, you will be happy to hear that I am
referencing your paper (along with 40 others) in a paper on strong loops and selectors ("generators" in
ALPHARD).

3.2 Dijkstra’s Response to First Version

From: Professor Dijkstra

To: Author

Date: January 24, 1977

for the paper that you mailed on Jan. 16, 1977, I am --alas-- forced to conclude that you have poor
helpers and supervisors. On pg. 116 I have written "I leave the final composition of our second program to
the reader...", and apparently no one in your environment has observed, that in this case the reader --you to

28. Lighthill[1972].

10

November 8, 2001 Draft A Dialogue on Structured Programming

be precise-- has done it wrong. On the top of pg. 115 is clearly stated, that after the four lines of code given
above a case analysis is done. "The case r = w, where colr may have one of three different values, reduces
to the alternative clause of the earlier program but for the fact that the "buck:swap(r,w)" -- r and w being
equal to each other-- can be omitted." You hav e just omitted that. Lower I have written "Then the three
alternatives can merge and a single text deals uniformly with the second pebble, the colour of which is still
given by colr." You allow yourself to break open the then following eight lines of code, allowing a fourth
control path to merge -- when there was no "second pebble". I conclude that on line 4/5 of page 5 of your
manuscript "with bugs removed" had better be replaced by "with bugs inserted". I enclose for your benefit
an annotated version of how the "final composition of our second version" could look like. The repeated
references in your text such as "incorrect", "a failure", "contains bugs", "makes a mistake"-- that I made an
error seem therefore all misplaced. I am not used to authors blaming me for their own blunders!

Allow me a few more remarks about your text. On page 4, line 6, you have "He claims to have used
the following thought process". My limited knowledge of English may mislead me, but in my ear that
sentence sounds as if you cast doubt on my truthfulness, and I am unaware of having given any reason to do
so.

In the footnote on page 6, "occurred" and "occurring" are misspelled.

On page 9, "goto skip whites" is executed with colr != red; therefore "goto make swaps" is executed
only with colw = red; doesn’t this imply w > r? Does w > r not also follow from the fact that "goto make
swaps" is from within a for-clause "for w := w downto r + 1? I don’t understand the need for the "if w > r
then" on the last line but 4 of your program.

I am glad that you have followed my advice on page XV "it gives you the opportunity to compare
your own solution with mine; and it may give you the satisfaction of having discovered yourself a solution
superior to mine." Whether such a discovery is sufficiently significant to justify its publication, is quite
another matter, in particular when it concerns an effort that I did not even bother to complete and that was
only included to give my readers at least one example of the kind of combinatorial complexity that
programmers should avoid. (It was a pleasure to observe, how well that advice of mine served you.).

Your conclusion contains so many misrepresentations of facts that it is unacceptable. And the last
sentence raises the question whether there is any solid meat in your conclusion "that programming is a
much more complex and creative activity than people currently believe". To which people are you
referring? There are so many simple-minded people who are not worth the trouble of contradicting them.

As a final piece of advice: it is a bad habit to rush into publication and to submit a paper when the ink
has hardly dried.

3.3 Second Version Submission Letter

From: Author

To: Editor 1

Date: March 16, 1977

I hav e enclosed a new version of my paper which corrects some errors and, I hope, expresses my
position more clearly. I sent an earlier draft to a number of people and have attempted to incorporate
answers to their criticisms. Your point about the unclear nature of refinement is well taken, and I have
included a definition from Notes on Structured Programming.1

I think data abstraction suffers from the same sort of problem as refinement. The initial selection of
high level data structures and their interface routines forces a programmer to think in one specific way.
This makes it very difficult to see solutions which involve data structure modifications. I worked with Jay
Earley on VERS and had the feeling no one really ever started by choosing abstract data structures but
simply used VERS as a language for writing down algorithms (as some people use English) and then wrote
programs as people normally do using much lower level languages.

1. Dijkstra[1972a], p. ??.

11

November 8, 2001 Draft A Dialogue on Structured Programming

Finally, I think abstract data structures may hinder the growth of new algorithms. I’ve been looking
at the various sorting programs that led to heapsort (they’re all published in the algorithm section of the
CACM), and it seems to me the ability to see a heap simultaneously as an array and a tree is crucial. If
Floyd had been limited to only abstract data structures and access primitives, it would at least have been
much more difficult to discover heapsort.

I appreciate all the time and effort you are putting into editing my paper.

3.4 Second Version Response to Dijkstra

From: Author

To: Professor Dijkstra

Date: April 20, 1977

Thank you for your letter of Jan. 24. I found your comments extremely valuable, but of course don’t
agree with a number of your conclusions. You are correct in claiming that I composed your program
incorrectly. I interpreted your discussion in general terms rather than as a specific recipe for how to
compose the program. You seem to switch between the two lev els. For example, in the first line of the
paragraph on the top of page 114, you make a general comment abut the program’s composition. I assumed
you meant the first paragraph on the top of page 115 to be taken in the same vein. I now see my error.
Also, I assumed you would handle the r = w case in the last case statement of the program since there is no
need for special handling of r = w and the code is almost identical. I hav e rewritten my paper to eliminate
any reference to errors and am now using the program you sent me.

I hav e been surprised by the way people interpret my paper. I meant the comments on the errors,
which I see now were imagined, to be supplementary to the main argument of the paper which you, and I
must admit a number of other readers, missed. The failure is in the refinement which results in no
improvement. I have rewritten the paper to make this point clearer.

People also misunderstand my attitude about errors. I think they are extremely important to the
whole programming process. Programming errors provide a way of seeing programs in much the same
way symptoms give structure and concreteness to human disease.

I included the comment about your thought process "he claims to have used the following thought
process" because on page xiii line 11 you write "I envisage doing so by describing the -- real or imagined --
design process...".2

Thank you for pointing out my spelling errors. I hav e tried to eliminate them.

You are right that the if statement 4 lines from the bottom of my program is unnecessary, and I have
removed it. It came up because I debugged the program and that statement didn’t effect its correctness.
Also, your constraints make the addition of extra program statements almost irrelevant.

I hav e attempted to make my conclusion more ’meaty’ and easier to understand. I think we disagree
politically and have attempted to show how the political viewpoint implicit in your programming theories
leads to worse programs and prevents people from developing to their full potential. My somewhat strong
tone is an attempt to make this difference as easy to understand as possible.

I hav e included the new version of my paper and would appreciated hearing any new comments.

3.5 Dijkstra’s Response to Second Version

From: Professor Dijkstra

To: Author

Date: April 26, 1977

I can indeed vaguely recall having commented on a manuscript you mailed me a few months ago. I
have not filed that manuscript, nor have I kept a copy of my letter to you; I had --kindly?-- forgotten your

2. Dijkstra[1976].

12

November 8, 2001 Draft A Dialogue on Structured Programming

name and even my diary --in spite of all the irrelevancies it contains-- does not mention your
correspondence. From this evidence I must conclude that I must have judged the manuscript totally
insignificant, a conclusion which does not seem incompatible with its second version, which strikes me as
silly in more than one way.

1. Very little objection, I think, can be based upon a version of a program that an author included in his
book for the purpose of illustrating the kind of logical complications a programmer should learn to
avoid. (If, in addition, the author’s complicated version is not more efficient that his simple
solution, you are only strengthening his point.)

2. If you want to make the point that stepwise refinement is not an infallible way of arriving at a good
solution, you are stating the obvious. To quote George Polya -- from "How to solve it", second
edition, 1956-- under "Rules of Discovery":3

The first rule of discovery is to have brains and good luck. The second rule of discovery is to sit tight
and wait till you get a bright idea.

It may be good to be reminded somewhat rudely that certain aspirations are hopeless.
Infallible rules of discovery are hopeless. Infallible rules of discovery leading to the solution of all
possible mathematical problems would be more desirable that the philosopher’s stone, vainly sought
by alchemists. Such rules would work magic. To find unfailing rules applicable to all sorts of
problems is an old philosophical dream; but this dream will never be more than a dream.

With the above quotation from Polya I am familiar much longer than you can be with your
quotation from Feyerabend, and I am not aware of ever having expressed --or even suggested that I
held-- an opinion contrary to Polya’s. If you want to oversimplify my views first, and then elaborate
on the inadequacy of the grotesque distortion, you are free to do so; I don’t feel addressed by it any
more.

In your letter you state you would appreciate my comments. I hav e only one advice: unless
you want to act like Don Quixote, fighting ills of your own imagination, burn this manuscript, for I
cannot see how -- to quote your letter-- "the political viewpoint implicit in my programming
theories" and the harm that that invention of your is supposed to do can be the subject of a scientific
paper. Yours ever,

cc: [Berkeley Professor]

3.6 Version Two Rejection Letter

From: Editor 1

To: Author

Date: July 15, 1977

I am obliged to inform you that I will not be able to accept your paper, "A Failure of Structured
Programming," for publication in the Communications of the ACM. The reasons are quite special, and I
would like to go into them at some length.

Your letter of March 16 contains, in my opinion, a number of sharp observations about the limitations
on structured programming. These go further than the generally accepted observation that structuring is no
substitute for the creative process, and shed light on the deficiencies of structured programming in
situations in which a naive view would expect it to be the methodology of choice.

An article which elucidated those views and illustrated them with interesting and counterintuitive
examples would be most welcome. This, I gather, is what you have in mind with the present article, and the
use of one of Dijkstra’s examples was well chosen to this purpose.

Obviously, howev er, a necessary condition on your paper, once you choose this approach, is that your
representations of Dijkstra’s position be beyond criticism. Otherwise regardless of the merits of your
development in extenso, the paper is open to attack, with at least partial justification, as tilting with

13

November 8, 2001 Draft A Dialogue on Structured Programming

windmills.

My personal view is that you are on the right track, but that any future paper - which I encourage you
to submit - must at least contain a flawless and undisputed presentation of the existing work you propose to
use as a jumping-off point.

cc: [Berkeley Professor]

3.7 Rejection Appeal Letter

From: Author

To: ACM Official 1

Date: August 29, 1977

My paper entitled "A Failure of Structured Programming" was recently rejected by the Programming
Techniques Department of the Communications of the ACM. The paper examines a solution to the Dutch
national flag problem published in A Discipline of Programming by Edsger Dijkstra in which an attempted
efficiency improving refinement is show to produce no efficiency gain. I am writing to you as Chairman of
the Publications Board because of my concern that the paper may not have received fair review.

Manuscripts involving methodological issues are normally edited by [Berkeley Professor], but since I
know her personally, I asked [editor 1], the other co-editor, to edit it. He agreed and has done an excellent
job in the sense that he conscientiously acknowledged my communications and edited the paper promptly.
My concern involves the grounds and manner of the rejection. There is one additional point which may be
relevant. An early version of this paper contained a mistake in which I miscomposed and thereby
discovered an imagined error in Professor Dijkstra’s refined solution. I believe that since I have removed
my error, it is no longer a point of contention.

As I read [Editor 1’s] letter, the rejection occurred because:

1. It is necessary that my representation of Professor Dijkstra’s position be beyond criticism, and

2. My representation is wrong and in fact a "tilting with windmills" (attacking a position which
Professor Dijkstra doesn’t hold).

Since no referee’s report or other detailed analysis was included with the letter of rejection, I can
only speculate on the nature of my purported misrepresentations. In addition, since I provided detailed
references to back up my claims, I was surprised that the refusal contained no mention of those references.

My concern is based upon the remarkable similarity between the objections Professor Dijkstra used
in his response to my paper and those upon which [Editor 1] states his decision was based (see enclosed
letters). Because it is unlikely that two independent responses would both invoke the image of Don
Quixote and tilting with windmills, it occurs to me that the rejection may have been based on Professor
Dijkstra’s letter. It seems unfair to allow the founder of a theory to referee a paper which attempts to argue
against his theory. One would expect Professor Dijkstra to find my paper unconvincing, but he shouldn’t be
able to prevent its publication. If there is some other basis for [Editor 1’s] arguments, I would appreciate an
opportunity to respond.

My concern is heightened because the claims in Professor Dijkstra’s letter are inconsistent with his
discussion of the Dutch national flag (DNF) problem in A Discipline of Programming. He states that since
the DNF problem was included not to illustrate refinement but to illustrate "the kind of logical complexity a
programmer should learn to avoid," no methodological objections can be based on it. But, he explicitly
uses refinement (p. 114)4 to produce what he believes is an "elegant solution" (p. 117). He is also
specifically concerned with improving his program’s efficiency through refinement (p. 114) but was
completely unaware that the refined solution was no better than his first solution using his efficiency criteria
(p. 116). Finally, his claim that the failure of refinement strengthens his point about avoiding logical

4. Dijkstra[1976].

14

November 8, 2001 Draft A Dialogue on Structured Programming

complexity cannot be correct since he believed his refinement succeeded (p. 117).

I don’t believe I distort or oversimplify any of Professor Dijkstra’s views. I understand, and never
state otherwise, that Professor Dijkstra believes refinement is sometimes fallible. My contention is not that
refinement is a basically good method which can go wrong, but it is actually detrimental to the practice of
programming and should not be used or taught. Refinement is such a basic part of the fabric of thought that
making it into an explicit method leads to less problem specific understanding and therefore worse
programs. The problem specific understanding then guides the actual programming. Of course, there are
many ways of understanding, and many program styles consistent with a given analysis. From a
psychological viewpoint, refinement creates the illusion that there are general methods when none exist.
My argument for this point is based on the paradigmatic nature of the DNF problem because Professor
Dijkstra, a founder of structured programming (SP), erroneously applies it to a simple problem which he
created and which involves a clear application of refinement. I would gladly modify my paper to improve
the clarity of this point.

There is a view of science due to Carl Popper which identifies a good scientific theory as one which
makes claims (called falsifiers) which are basic to the theory and open to refutation. I think it is important
that my paper be published because of structured programming’s (SP) lack of any openly announced
falsifiers. Successful applications seem to count as positive evidence, but unproductive applications are
attributed to the individual programmer’s lack of skill. My paper only casts doubt on SP, but due to the
almost universal acceptance of SP and due to the dearth of published criticism, it is important that the
programming public be given a chance to evaluate any neg ative evidence. I have included a quotation
which discusses the difficulties involved in criticizing Freudian Psychoanalysis because I believe it applies
with change to SP.

It is important that my paper appear in the CACM rather than some more technical journal because
the paper is intended for a wide audience. The Dutch national flag problem is easy to understand, requires
no mathematical background, and results in short programs.

If Professor Dijkstra, or anyone else, believes my paper contains faulty arguments, I would be happy
to have his or her rebuttal published along with my article.

I appreciate your consideration.

3.7.1 Professor Cioffi’s Quotation

It is characteristic of a pseudo-science that the hypotheses which compromise it stand in an
asymmetrical relation to the expectations they generate, being permitted to guide them and be
vindicated by their fulfilment but not to be discredited by their disappointment. One way in which it
achieves this is by contriving to have these hypotheses understood in a narrow and determinate sense
before the event but a broader and hazier one after it on those occasions on which they are not borne
out. Such hypotheses thus lead a double life--a subdued and restrained form in the vicinity of
counter-observations and another less inhibited and more exuberant one when remote from them.
This feature won’t rev eal itself to simple inspection. If we want to determine whether the role played
by these assertions is a genuinely empirical one it is necessary to discover what their proponents are
prepared to call disconfirmatory evidence, not what we do.5

3.8 Appeal Response

From: ACM Official 1

To: Author

Date: September 6, 1977

Thank you for your letter of August 29 concerning the decision regarding your manuscript "A Failure
of Structured Programming."

I am turning this correspondence over to [ACM official 2], Editor-in-Chief of Communications, so

5. Cioffi[1974], p. 474.

15

November 8, 2001 Draft A Dialogue on Structured Programming

that he may look into this matter. Both as wearer of the latter hat, and of that of Chairman of the Editorial
Committee, he is the appropriate individual to be directly concerned with the issues you raise, although of
course I should be pleased to conduct a further level of review should that ultimately become necessary. I
am sure that he will be back in touch with you shortly with his findings.

3.9 Rejection Explanation

From: Editor 1

To: Author

Date: September 6, 1977

In response to your letter to [ACM Official 1] concerning my rejection of your article, "A Failure of
Structured Programming," I feel that I owe you two things: (1) an apology for certain failures in the editing
process, for which I am solely to blame; and (2) a much fuller account of the reasons which are pertinent to
the rejection of the most recent draft of your article.

With regard to (1): In looking over my file (by now quite extensive), I discovered no letter in which I
included copies of referees’ reports. These conceivably may not have been sent; if so, it was a clerical error
which I should have caught. In fact there were two such reports, which are included. The other point I
should mention is that soon after sending you the letter of rejection, it occurred to me that my invitation to
submit a new paper might be construed falsely to mean that it could not be based on the Dutch National
Flag problem, or on Dijkstra’s handling of it. I reg arded this as sufficiently serious that I attempted to call
you at Berkeley sev eral times. At length I left a telephone message to that effect. I sincerely hope that it go
to you.

My insistence on accuracy in representing Dijkstra’s position was based on my reading of the first
draft. On careful reading of the second draft, I now concur with you that this point was successfully dealt
with, and that its accuracy in dealing with Dijkstra’s claims was - with one significant exception, to be
explained below - quite sufficient. In addition, the misplaced emphasis in the first version on a bug in
Dijkstra’s program was also corrected, so that the focus was no longer peripheral. I believe that Dijkstra’s
insistence that was no essential difference between the two drafts was a factor in my mistaken emphasis on
accuracy of representation.

Now to the more substantive issue (2):

I hav e now read Dijkstra’s and your article carefully, so that I think I can comment on matters of
content without undue influence from referees or from consultants.

I reg ard Dijkstra’s article as heavily flawed. The essential flaw is that, having set himself the goal of
constructing a (swapwise) optimal algorithm for solving the DNF problem, he then constructs an obviously
correct outer skeleton for the unoptimized DNF problem, and then proceeds to a series of "observations"
that are nothing more than heuristics for possible improvement in the algorithm’s average performance.
Not surprisingly, these heuristics are not all improvements. Even less surprisingly, they do not in tandem
achieve an optimal algorithm. In fact not a shred of argument is ever offered that (1) any of them belong in
an optimal refinement, or (3) any refinement of his skeleton exists that will achieve an optimal algorithm.

The very real objection exists, therefore, that Dijkstra’s "refinements" are not refinements at all but
simply bad heuristics, unjustified, which he inserts into has program by "refinement".

If this analysis is right, your attack on Dijkstra’s paper is not an attack on programming by
refinement, but merely an attack on a bad exposition of it.

Nevertheless, there is a seed for a most attractive paper, which I would look very kindly on: A paper
in which it is shown that, plausible though Dijkstra’s skeleton is, it is a blind alley in that either (a) no
refinement will achieve an optimal algorithm, or (b) only a refinement of excruciating complexity will
work. I rather suspect that formulation (a) is right.

However, that is not what you do. Rather starting from a new tack, you first "discover" an optimal
solution for the two-color flag problem. This solution, from what I can see, is none other than separation
by radix exchange, which has been known for at least 20 years (see Knuth, Vol. III; you should mention

16

November 8, 2001 Draft A Dialogue on Structured Programming

that is is an old problem).6 By an ingenious generalization, you produce a three-color variant which is quite
elegant. You then make the valuable point (which should be more explicit) that extension is itself rarely
expressible as refinement, because the changes are interlaced in the original. Now comes the rub: By
careful argumentation (viz. McMaster’s article on the same subject),7 it turns out that algorithm is optimal.

Yet the requirement of optimality never is a clear or demonstrable element in your methodology,
granted that it is not refinement. It proves on subsequent analysis to yield an optimum solution. Therefore,
as far as concerns your methodology of construction, it is as heuristic as Dijkstra’s. The reader is thus left
with both the feeling that the driving idea(s) behind your algorithm and Dijkstra’s are both rather opaque.

It should be clear that a new paper on the same subject might work several new angles: For instance,
(1) that problems posed in which there is a requirement for optimality or near-optimality have much less
chance at realization through refinement than problems without such constraints, (2) that problems with
optimality or near optimality requirements may be achievable only with colossal difficulty via refinement
(since this forces the verification process to be applied to the part of the program already constructed), (3)
that plausible skeletons of the programs in an early state of refinement which easily yield nonoptimal
solutions may be entirely wrong when optimality requirements are added, and (4) that the process of
extension is not in general expressible as refinement.

These, as I see them, are some valid ideas, although they do not constitute a universal attack on
structured programming. One of the weakest aspects of your paper was its overgeneralized claims about
the invalidity of structured programming, which was in my judgement not borne out by the paper. This was
the primary reason for its rejection, which stands.

If you follow the spirit of these suggestions, I believe you will produce a paper with a good chance of
publication.

3.10 Response to Rejection Explanation

From: Author

To: Editor 1

Date: October 19, 1977

I appreciate your prompt response to my letter to [ACM Official 1]. I now understand your position
much more clearly but still think "A Failure of Structured Programming" was unfairly rejected. I did
receive your telephone message and appreciate your concern but believe your suggestions for a new paper
involve a misunderstanding of refinement and the nature of SP. Your new review seems also to be based on
that misunderstanding.

Optimality is not an issue in either my argument against refinement or in Professor Dijkstra’s
treatment of the DNF. My three color solution is not optimal because increasing the number of pebbles
inspected before doing any placing reduces the average number of swaps at the cost of increased program
size and complexity. I do not know whether the improvement is a fixed constant or is actually proportional
to the number of buckets. In the limit, this strategy has the effect of removing the requirement that each
pebble be inspected once. Both Professor Dijkstra and I believe program choice must be based on many
criteria, not just optimality, and "as conscientious programmers we should investigate how complicated a
possibly more refined solution becomes." (Discipline, p. 114). Finally, my argument in no way hinges on
the fact that the failure occurred in an efficiency improving refinement. Professor Dijkstra claims he is
using "refinement" not "efficiency improving refinement" or "optimality producing refinement".

Refinement is a heuristic method, and therefore it can never be disproven (see Dijkstra’s quotation of
Polya in his letter to me or his 1975 Pacific ACM address).8 Since refinement (and SP) are heuristic, they
may always be used successfully by a sufficiently skilled programmer. It follows from this that my solution
to the DNF problem could be discovered in many ways (exhaustive case analysis, good intuition, or
whatever). I included the way I happened to discover it to show an example of an approach outside of SP.

6. Knuth[1973], pp. 123-129.
7. McMaster[1979], pp. 842-846.
8. Dijkstra[1975], pp. ??

17

November 8, 2001 Draft A Dialogue on Structured Programming

The point I try to make is that problem solving is by its very nature opaque and therefore universally
applicable heuristics (let along algorithms) are illusionary. I believe my analysis of the DNF problem
provides evidence for exactly this point. An educational approach to go along with my view would expose
students to as many programming styles and methods (tricks) as possible and encourage them to adopt their
own approach.

I find it rather strange that you suggest Professor Dijkstra may not have been using his own
methodological rule correctly in spite of his claim that he is illustrating its use (p. 114).

I am still concerned about two matters:

1. Both enclosed referee’s reports apply only to my first version and do not seem to have been involved
in your editorial decision. The double spaced report only discusses the error which has been
corrected in the second version. The single spaced report, which was written by one of friends from
Berkeley, Colin McMaster, was not typed unit July 15, and was mailed some days later Yet, your
rejection letter was also dated July 15.

2. You seem to base part of your decision on your lack of agreement with my conclusion. This is a
decision which is usually left up to the reader. If the policy of not publishing material which fails to
convince an editor had been followed throughout the history of science, many of the theories we
now believe would never hav e been published.

P. S. By the way, the two color problem actually appears as an exercise in Knuth Vol. 3 (5.2.2-33).9

3.11 Third Version Submission Letter

From: Author

To: Editor 2

Date: February 8, 1978

I submitted a paper entitled "A Failure of Structured Programming" to the Programming Techniques
Department of the CACM. This paper was edited by [Editor 1]. I spoke with him on Friday, January 13th,
and he made a number of specific suggestions which he felt would make my paper suitable for publication
and also suggested you take over as editor. He said he would get in touch with you and describe the
situation. I agreed to do the following things:

— Send you copies of our previous correspondence.

— Include copies of both the old and new versions of my paper

— Modify my paper to eliminate certain problems and describe in this letter those modifications.

The remainder of this letter discusses his three specific objections and describes my changes.

1. [Editor 1] felt my paper’s tone sounded too much like a personal attack on Professor Dijkstra.

I made the following changes:

a. Use of Professor Dijkstra’s title in a few places.

b. Changed a number of sentences discussing the failure from "Dijkstra <something>" to "The
failure involved <something>."

c. Gave Professor Dijkstra explicit credit for the observation in footnote 3 in [Chapter 2 section
4].

d. Removed a number of critical adverbs (e.g. completely wrong to wrong) and strengthened
positive adverbs (e.g., alright to good).

This paper still is not written in the normal detached scientific style because one of my points is that

9. Knuth[1973], p. 137.

18

November 8, 2001 Draft A Dialogue on Structured Programming

programming is a personal activity which involves matters of individual taste.

2. He felt my claim that all types of refinement were similar was wrong.

I think there is considerable evidence that both Professors Dijkstra and Wirth view all types of
refinements as one process and I have included as many of their discussions on the nature of
refinement as I could find (see enclosures).10 Refinement seems never to hav e been explicitly
defined, but no distinction is made in discussing the various types. Also, Professor Dijkstra never
objected to my claim that the types of refinement are similar in his correspondence concerning my
paper.

3. Finally, he felt my conclusions were stronger than my evidence warranted.

I’ve rewritten my conclusion to state my argument more clearly and also explicitly state my
conclusion is only my opinion. I feel the reader ought to have a chance to judge for himself my
conclusion on structured programming.

3.12 Third Version Rejection Letter

From: Author

To: Editor 2

Date: October 5, 1978

I hav e received the enclosed referee’s reports on your paper, "A Failure of Structured Programming,"
which you have submitted for possible publication in CACM. On the basis of these reports, I have decided
that your paper is unfortunately unacceptable for publication in CACM. In view of your feeling your paper
was treated unfairly under the previous editor, I would like to elaborate on this decision.

First of all, the two referees who examined your revised manuscript are people who have thought
deeply about programming methodology, and who are well respected in this field. I trust their judgements
in this area very much more than I trust my own. However, I would be willing to send out your manuscript
for even a third opinion, if you feel there is any reason to do so. (Of course, such a third opinion would
have to be very strongly in your favor in order to induce me to change my decision.) In any case, I offer
you this option if you feel that the referee I chose were in any way unfair.

My editorial decision was based primarily on the reports of the referees. I would like to "change
hats" from "editor" to that of "interested computer scientist" in what follows, in order to give you some
feedback and comments of my own.

You might be interested to know that a practical problem essentially identical to that of the DNF
problem arose once in my own research. Bob Floyd and I had developed a very efficient algorithm for
finding medians (see CACM 18 (March 1975), pp. 165-172 and the algorithm SELECT in the same issue.)
The innermost loop of this program involved partitioning a set X of numbers into three subsets A, B, and C
by comparisons with elements u and v where u < v:

A = {x in X | x <= u},
B = {x in X | u < v and x <= v},
C = {x in X | v < x}

Where X is kept in any array, the sets A, B, and C correspond exactly to the red, white, and blue pebbles of
the DNF problem.

All of my initial solutions followed the DNF rule of never examining an element more than once. I
was disappointed to find our algorithm in these cases always seemed slower than a previously published
algorithm due to Hoare (CACM 4 (July 1961), p. 321). Hoare’s inner loop involved choosing a random
element u from X and then dividing X into the two sets:

A = {x in X | x <= u}, and
B = {x in X | u < x}.

10. The material enclosed was ??.

19

November 8, 2001 Draft A Dialogue on Structured Programming

The algorithm Hoare presents for his inner loop is the same as you suggest for the two-color case.
(Unfortunately, I no longer have copies of my initial programs available).

Eventually, howev er, we were able to transform the theoretical superiority of our procedure over
Hoare’s into a practical superiority as well, by finding the most efficient program for our inner loop.
Although it now violates the constraints Dijkstra imposed for solutions of the DNF problem (that is, we will
look at pebbles more than once), it seems to provide the most efficient solution when the actual running
time is to be minimized.

Our solution is:

(Step 1) Use the efficient two-color algorithm to separate the red pebbles from the "white and blue"
pebbles. (That is, treat white and blue as equivalent colors in this step.)

(Step 2) Use the efficient two-color algorithm to separate the white pebbles from the blue ones.
This solution seems to outperform any solution which adheres to the DNF problem constraints. This fact is
perhaps unintuitive at first glance, and was only discovered after quite a bit of experimentation. The
av erage number of swaps turns out to be 2N/9 + N/6 = 7N/18, considerably less than your solution.

I’m not sure what relevance all of the above has to your paper, except to point out that something like
the DNF problem arises in practice.

Now to other remarks about your paper.

I agree with your basic point that structured programming (or refinement) is unlikely to lead to
optimal programs. When efficiency of execution is the ultimate objective, one must be prepared to sacrifice
readability of code and the luxury of writing the program in a single sequence of refinements. A large
number of completely worked out possibilities must be analyzed and compared; subtle details can have
great effects on the overall speed. And if one is really interested in optimal (rather than just good)
programs, an equal amount of effort must be spent proving a lower bound on the achievable running times
(as McMaster has done for the DNF problem). Developing optimal programs often depends on tricks and
"ad-hocery".

The major problem in software methodology today seems to be the development of techniques which
enable the programmer to handle very large, complex problems and to produce readable, maintainable
code. Efficiency of execution is much less important and is becoming less so as hardware speeds increase.
Structured programming seems (to me) to be a valuable technique for attacking a very large, complicated
problem. If it produces a very efficient solution as well, that’s all the better, but the important point is that it
enables one to find a working, correct, readable solution. I think Dijkstra’s chapter on the DNF is
misleading since the problem is so simple that one can afford to pay a lot of attention to efficiency without
paying undue costs in terms of complexity. The fact that one can prove that some program is, in fact,
optimal for the problem only demonstrates to me that the problem is really trivial and a toy; structured
programming perhaps is most useful on problems that are so large that they hav e no hope of having a
provably optimal solution.

My own basic reaction to your paper is that while I find it amusing to see that you’ve more or less
caught Dijkstra doing useless or even wasteful refinements to his program, your paper tries to get too much
mileage out of such a simple example. The technique of refinement is a tool for program design. Although
any tool can be used for the wrong purposes (and using refinement to find optimal programs may be like
using a saw to dig for gold), and although even a master can perhaps misuse a tool, these facts do not really
cast much double on the fundamental utility of the tool.

Your presentation would be much more effective if you were to err in the opposite direction, and
understate (rather than overstate) the implications of your observation for the utility of structured
programming. A "hard sell" here is easily taken as a basis for dismissing your paper.

In any case, the above remarks and suggestions are merely my own personal comments The editorial
decision not to publish your paper was based on the referee’s reports.

Please feel free to contact me if you have any questions or wish to discuss this decision. In view of

20

November 8, 2001 Draft A Dialogue on Structured Programming

your (somewhat justified) complaints concerning the previous treatment of your paper, I hope to satisfy you
that your recent revision was given a fair and competent hearing.

3.12.1 Referee’s Report 1

Article: A Failure of Structured Programming

Author: Steven Meyer

Thank you for sending me "A failure of structured programming". I would recommend you not
publish it.

I hav e seen many attempts to pull Dijkstra off the high pedestal on which the world has placed him,
but this is one of the silliest. To reject a whole methodology on the basis of this one trivial example is
absurd. Obviously the technical discovery reported in the paper is worth a brief publication, and I look
forward to seeing McMaster’s paper, which appears to treat the matter thoroughly and scientifically.

I am very much in favour of publication of controversial papers, especially ones which attack an
"accepted orthodoxy". But they should be based on a little more than a rather minor improvement to a
rather minor example program.

The quotation from Feyerabend is also silly. Who ever would propose that "science" should "run
according to fixed and universal rules"? Science shouldn’t be "run" at all. Scientific research should be
conducted in conformity with general standards of scientific reasoning. Scientific discovery, of course, is
unfettered, because it is essentially based on "informed guesswork". But that does not absolve the scientist
of responsibility to substantiate his "guesses" in a most rigorous fashion.

3.12.2 Referee’s Report 2

Article: A Failure of Structured Programming

Author: Steven Meyer

This paper has relatively little technical content. It does have a point to make, namely the use of
stepwise refinement does not guarantee good programs. However, I’m not convinced anyone really
believed the opposite. I believe the paper is of border line quality for publication, especially in the CACM.
I’m undecided about publishing but leaning toward negative.

If it is published, it should be slightly revised. First, it is not true, as the author states on page 2, that
stepwise refinement led to the poor second solution. Stepwise refinement just didn’t guarantee that the
better solution would be found. This misstatement must be corrected.

Second, it might be useful for the author to restructure has program, since his use of goto’s raises
extraneous issues anovated with the trivial meaning of "structured programming" (i.e. no goto’s). I am
enclosing an alternative program.

21

Chapter 4

Should Computer Programs be Verified
4.1 SIGSOFT Letter

Professors De Millo, Lipton, and Perlis recently published a paper which questions the value of
program verification.1 The appearance of this paper is interesting because the idea that programs should be
proven correct rather than debugged has had near universal acceptance.

A critical commentary on this paper written by Professor Dijkstra was published in these notes (April
1978).2 I don’t wish to discuss the details of the disagreement here but rather to suggest that professor
Dijkstra’s commentary contains two empirical (quasi-empirical) claims which may provide the basis for a
scientific test of the utility of program verification.

There is a view of science first proposed by Popper that any true science must contain open and
testable claims3 Lakatos has shown that this same testability applies to mathematics in the form of methods
(approaches) which are tested by evaluating their problem solving success.4 My intention in pointing out
the following two claims is to encourage work which will lead to such a scientific test of program
verification.

In response to the De Millo et. al. argument that program correctness proofs are inherently long and
complex and therefore unconvincing, Professor Dijkstra agrees that long format proofs are unconvincing
but states

It is the mathematician’s task to arrange his arguments in such a fashion that avoidable formal
manipulations are, indeed, avoided, and to discover those theorems that do admit to a concise proof.5

If it turns out that no one is able to find concise (and elegant?) proofs of programs written in the everyday
practice of programming, it would cast serious doubt on program verification. On the other hand, the
publication of such concise verifications would lend strong support to program verification. It occurs to me
that Software Tools6 might contain programs which are difficult to prove concisely. Of course, it may turn
out that concise verifications are possible for certain applications or situations but not for others.

The question of the existence of concise verification may also be open to theoretical analysis. One
approach involves analyzing the inherent complexity of computer programs.7 Another approach involves
the inherent complexity of various formal deduction schemes.8 Both approaches use artificially constructed
problems designed to simplify the mathematical analysis and therefore may not be relevant to real computer
programs. Also, when people verify programs, they may not be limited by formal approaches and can
rather use their intuition and good fortune to discover concise proofs.9

The second claim pertains to the value of formal versus informal reasoning. Professor Dijkstra writes

Eventually a nice formal treatment is always the most concise way of capturing our understanding
and the most effective way of conveying the argument with all its convincing power to someone
else.10

The publication of formal treatments for things which seem difficult to treat formally would provide
impressive positive evidence for program verification. I would be especially impressed by a formal
treatment of the U.S. tax code which is more effective (and concise?) than the current combination of

1. De Millo[1977], pp. 206-214.
2. Dijkstra[1978], pp. 14-18.
3. Cf. Popper[1959] for the original argument and Cf. Lakatos[1970], pp. 91-196 for a further development of the viewpoint.
4. Lakatos[1978], pp. 24-42.
5. Dijkstra[1978], p. 14.
6. Kernighan[1976]
7. Cf. for example Jones[1977], pp. 338-350.
8. Cf. for example Cook[1976], pp. 28-32.
9. Lakatos[1976], pp. 1-5.
10. Dijkstra[1978], p. 14.

22

November 8, 2001 Draft Should Computer Programs be Verified

statutes and judicial decisions.

The reader should understand that I have chosen to only discuss Professor Dijkstra’s commentary
because he is the most eloquent and sophisticated supporter of program verification and because I believe
limiting my remarks to one commentary simplifies the reader’s task.

4.2 Postscript

Section 4.1 was written as a reply to the first version of the De Millo et. al. argument (see above) that
program correctness proofs were not successful for behavioral reasons. I meant to argue that verification
was also impossible for scientific reasons and that no social change in the practice of programming would
make correctness proofs more valuable. This argument was partially incorporated in the much improved
second version of their paper,11 but their main argument remained sociological. An extensive and in the
main highly favorable group of responses appeared in the CACM forum.12 The favorable responses also
disagreed with the sociological rather than scientific nature of their argument. In any event and for
whatever reasons, most computer science researchers are now convinced that program verification is
unpromising.

There is one more argument against verification which was not included in section 4.1 because of
space limitations. The argument goes: program proofs are not useful since the program itself already plays
the role in computer programming which the proof plays in mathematics. In mathematics, a theorem is
stated as a provisional solution to some intuitive problem. The solution (theorem) is then improved by the
proof process.13 One might say the proof and the problems which arise in its construction (bugs) serve to
move implicit background knowledge into the problem solution.

In programming, the program itself plays the role of both the theorem and the proof. Difficulties
which arise in solving some intuitive problem are detected by testing and debugging which then results in
improvements to the program and possibly in shifting the original intuitive problem.

This may be the reason programming works well in solving problems which are complicated and
detailed but not deep and generalizable. It may also explain why mathematical algorithm analysis is most
successful for programs which are abstract and general but not detailed while performance measurements
are most successful for programs which are detailed but not deep.

11. De Millo[1979], pp. 271-280.
12. Ashenhurst[1979], pp. 621-630.
13. Cf. Lakatos[1976] for a more complete discussion of this view of mathematics.

23

Chapter 5

A Constructive Placement Algorithm for Logic Arrays
5.1 Introduction

Advances in integrated circuit technology and logic design aids have made 10,000 gate logic arrays
practical in 1983, but computer aided physical design must still be improved to efficiently utilize advances
in silicon technology. Since most placement and routing algorithms are NP complete (probably not
solvable in polynomial bounded time) in their worst cases, progress has been limited by computing time
requirements alone.

This paper describes a constructive phase only placement algorithm that is part of LSI Logic’s LDS I
logic array design system. It is routinely used to place CMOS circuits with up to 6000 potentially usable
gates. The algorithm is limited in the sense that it is optimized for one particular array geometry, but it
requires no iterative improvement phase and uses only a few minutes of computer time.

The main scientific contribution of this paper is in showing that a constructive placement algorithm
with either pre-placement circuit partitioning or iterative improvement is much more promising than
currently believed and in offering reasons why this may be so.

5.2 The Basic Placement Problem

The logic array (sometimes know as gate array) placement problem involves assigning circuit
elements to physical integrated circuit transistor gate locations. A circuit element is a cell that implements
some logic function and ranges from a simple two pin inverter to high level, multi-pin macro functions such
as flip-flops or multiplexers.

Following Fiduccia and Mattheyses,1 problem input is presented as a set of C cells (circuit elements)
connected by a set of N nets (signals or wire lists). The point at which a net connects to a cell (internal
macro cell) is called a pin and by assumption each cell contains at least one such pin. Also each net
contains at least two pins, and each cell is in at least one net.

This formulation implies that the size of a problem is bounded by the number of cell pins P in a given
circuit and means any simple operation, such as circuit input, is O(P) (roughly bounded by P) except that
some input schemes may require input pin sorting which is O(P LOG P).

Problem input also includes two data structures that are assumed to have been constructed during
circuit input. One is a list for each cell giving each net that cell is in. The other is a list for each net giving
each cell that net is connected to.

5.3 The CMOS Logic Array Placement Problem

The particular constructive placement algorithm described here is embedded in LSI Logic’s LDS II
automated design system2 and is similar to the LTX system3 in intent. The current algorithm only applies
to the 5000 series of CMOS logic arrays.4 Arrays in the series use two layer metal for separate horizontal
and vertical wiring and only one uniform cell placement area. The cell placement area is a rectangle of R
cell rows each of which is G gates wide. The total internal array area is R*G. All external (off chip)
signals must be routed through I/O pads (package pins).

The 5000 series consists of arrays ranging in size from 800 to 6000 gates.5 The equal length gate
rows are separated by fixed width horizontal wiring channels. For example, the 3200 gate array family
member contains nineteen cell rows with each row containing one hundred sixty eight gates. The area
between the chip I/O pad region and the internal cell region also contains usable wiring tracks both above
and below the cell rows and to the right and left of the row and channel ends. These areas are somewhat
larger than the wiring channels.

1. Fiduccia[1982], pp. 175-181, and also Schweikert[1972], pp. 57-62.
2. Koford[1981] and LSI Logic[1983a].
3. Perky[1977], pp. 217-255.
4. Shiraishi[1980], pp. 458-464, Kanada[1981], pp. 427-441, and Werner[1982], 206-214.
5. LSI Logic[1983a]

24

November 8, 2001 Draft Logic Array Placement

Each horizontal wiring channel currently contains sixteen tracks and there are no over cell row
vertical wiring channels. This causes what is known as the inter-channel feed-through problem.6 It means
that feed-through wires must be routed either over unoccupied gate locations or over free tracks inside cells
(usually this means not occupied by a pin). The lack of vertical wiring channels implies utilizations higher
than seventy to eighty percent are rarely attainable and for circuits with unusually complex wiring (many
pins and large nets), utilization can be as low as fifty percent, but wire complexity and feasible utilization
estimates are available to the circuit designer.

5.4 Algorithm Description

The algorithm described here is an improved version of the "epitaxial growth" constructive placement
algorithm described in Soukup’s 1981 overview paper.7

As described in Hanan[1972],8 a constructive placement algorithm selects and places cells according
to some evaluation criteria that is defined only in terms of already placed cells and circuit connectivity
information. The approach requires a method for selecting and placing starting seed cells, an evaluation
criteria for selecting the next cell to place, and an evaluation criteria for determining where to place a cell.

The basic idea is that at any giv en stage of the placement process, the cell being placed is the one
about which the most is known. This means the cell in the net which has the highest percentage of already
placed cells. Also when placing a cell, the largest possible sample of connectivity information is used.

This algorithm is termed "epitaxial" since cells "grow" from the edges inward in a planar pattern even
though isolated islands often appear early and not necessarily near the chip edges. It is an improvement
over the algorithm sketched by Soukup in using a two step seed placement phase and in usually completing
the placement of all cells in a net before starting on the cells in the next net.

5.4.1 Seed Cell Selection

The algorithm assumes I/O cell pad assignment has been specified as part of the circuit design. It
then uses the pads to place some cells in the internal cell region which are then used as seeds for the rest of
the placement. For every net containing a pad cell, the largest non-pad cell in that net is placed as close to
the pad as possible using exact wire grid distance. The pad cell containing nets are selected in arbitrary
order. Nearly all cells are placed in their true minimum wire distance locations and usually from ten to
fifteen percent of the circuit’s gates are placed in this phase. The algorithm is normally insensitive to chip
I/O pad assignment as long as pads are uniformly spaced around the chip. After completion of seed
placement, pad cells are simply ignored.

5.4.2 Next Cell Selection

Cell selection is accomplished by selecting a net and then selecting the largest unplaced cell in that
net. The selected net is the one that has the largest percentage of cells already placed. Ties are broken by
choosing the largest net. "Largest" means containing the most cells, and if there are still ties, "largest"
means occupying the most most total gates. After a net to place is selected the largest unplaced cell from
that net is placed and selection process is repeated. In general placing one more cell in the already
completed net insures that the same net will be selected again, but sometimes small nets are finished before
the current net is completed. An earlier version of the algorithm placed all unplaced cells whenever a net
was selected and in all but a few cases seemed to do as well. The idea behind this selection criteria is that
the important idea is not how good the next cell placement is in terms of already placed cells but in making
sure the next cell has the most possible location information know about it.

5.4.3 Cell Placement

Once a cell is selected the algorithm tries all unoccupied internal array locations (contiguous gate
regions) in which the cell will fit. The cell is placed in the location that minimizes the sum of the weighted
minimum spanning tree distance for each net the given cell is connected to. In effect, net distance is
computed by finding the closest already placed cell in each connecting net.

6. Perky[1977], pp. 217-255, and Kanada[1981], pp. 427-441,
7. Soukup[1981], pp. 1281-1304.
8. Hanan[1972], 213-282.

25

November 8, 2001 Draft Logic Array Placement

The evaluation function is measured only to gate, not wire grid, distance but otherwise simply
minimizes distance weighted by user supplied weights. The weights are based on real wire grid distance
but are usually modified to improve wirability. They were discovered through trial and error and seem to
increase the frequency of cross channel connections and to reduce the number of cell row feed through
wires.

5.5 Pragmatic Considerations

The algorithm has several user selectable parameters that allow compensation for differences
between array sizes and individual circuits. They also aid in producing placements that take advantage of
the available automatic router’s strong points. Circuits are sometimes placed more than once to improve
routability.

5.6 Running Time

This algorithm’s running time is bounded by the cell placement phase since the cell selection phase
simply involves a minimum calculation over the as yet uncompleted nets performed once for each cell. The
number of steps required place all cells is loosely bounded by the sum over all cells i of A*p(ci)*nmax.
Where A is the number of gates in the array, p(ci) is the number of pins cell i has, and nmax is the size of
the largest net in the circuit. Since A and nmax are constants for a given circuit, the bound becomes
A*P*nmax where P is the total number of internal macro cell pins in the circuit. Remember that the sum
for all cells C of p(ci) is P. In practice this value is bounded by O(P2) since the number of gates is usually
comparable to the number of pins and nearly all nets contain less than five or ten pins.

The running time for various placements on a 5 mip Amdahl 470 V6 using IBM Pascal with
moderate use of inline procedures ranges from 30-45 seconds for 1400 gate arrays to 8-10 minutes for 6000
gate arrays. I/O and data structure construction times are included.

5.7 Results

The algorithm works well in the sense that it produces wire completion results better than those
produced by a random initial placement, net span minimization iterative improvement algorithm similar to
those described in Hanan.9 It also produces reasonable wire lengths and spreads wire congestion out
uniformly. In the one case is was compared to a manually placed circuit, it produced better wire length but
required more manual clean-up routing.

5.8 Discussion

The described algorithm seems to work well because it makes good use of the edge area of the chip
while doing a reasonable job of wire length minimization. The idea of epitaxial growth from edges inward
may work because it corresponds to the way circuit designers think of their circuits. The problem of array
center congestion, as described in Burstein10 seems to be avoided by using pad net seed cells. Finally
epitaxial growth with distance minimization seems to generate more equally good possible cell locations
than iterative distance minimization schemes and therefore seems to work well over a large range of
different circuit organizations.

The success of this algorithm seems surprising in light of the commonly accepted belief that the most
promising placement approach involves the three step process: circuit partition, constructive initial
placement, and finally iterative improvement.11 On the other hand, it is also accepted that placement is not
a solved problem and work is continuing both on other placement techniques12 and on enhancements to
iterative improvement.13 In general the three step approach may be valuable, but in the case of CMOS logic
arrays, there seem to be so many conflicting requirements that must be dynamically balanced that no simple
mathematical evaluation function may exist, and possibly the best evaluation function may be pad cell
driven epitaxial growth itself.

9. Ibid.
10. Burstein[1982], pp. 265-269.
11. Hanan[1972], pp. 213-282, Hanan[1978], pp. 28-61, and Soukup[1981], pp. 1281-1304.
12. Perky[1977], pp. 217-255.
13. Kirkpatrick[1982], and Burstein[1982], pp. 265-269.

26

November 8, 2001 Draft Logic Array Placement

5.9 Postscript - Comparison with ECL placement

The "epitaxial" growth algorithm was modified to place ECL gate arrays14 but was considerably less
successful. This was primarily due to electrical differences and secondarily due to geometric differences
between the two array types. The biggest ECL array in production in 1983 had a maximum of only 144
macro cells called half cells. The only other cell size is a full cell (excluding interface and external I/O
cells) that consist of two adjacent half cells. This results in almost no wiring channel congestion since most
channels contains at least 14 tracks. As compared to CMOS type arrays, the number of internal macro cell
pins is less than 15 percent while the number of available wiring tracks is almost 90 percent. The number
of cells in an ECL array is small enough to allow more exhaustive search or, for that matter, only semi-
automatic placement. There are so many available wiring tracks that there is no reason to spread out
congestion.

ECL array macro cells are often used in a different manner than CMOS macro cells. ECL cells are
not always limited to one function but instead may consist of some combination of primitive subcells. One
common half cell provides two NAND gates, one with three inputs the other with four.15 This lack of
unique cell functionality reduces the value of signal net based placement.

Also wire length along critical paths is much more important in the faster ECL technology. The
resistive metal layer delays are only a small percentage of total delays in both cases, but in ECL, circuit
speed is a more significant factor.

Finally, for ECL technology macro cell power consumption balancing over various parts of the chip
is critical.16 This almost dictates the use of some type of quaternary partition placement approach that is
incompatible with epitaxial growth. (see Kernighan17 for a binary partition algorithm.)

14. LSI Logic[1983b].
15. Ibid., p. 4.
16. Motorola[1980], p. 2.
17. Kernighan[1970], pp. 291-308.

27

Chapter 6

Discussion
6.1 Evaluation

In some aspects this thesis research has been successful and others not. Structured programming is
definitely not as universally accepted as it was in the middle 1970s. But that change may have had nothing
to do with the arguments contained here. There is now strong evidence that structured programming is at
least too narrow and rule like, but no programming can be replaced simply by arguments and evidence
since a major component of any such methodology is by necessity psychological.

6.2 Subsidiary Results

Tw o problems which are in themselves unexpectedly interesting have been identified. The Dutch
national flag problem lies at the boundary of trivial and difficult problems and turned out to be difficult to
analyze mathematically. The gate array placement problem is simple to state and at least in principle
solvable by exhaustive search but in practice seems much more difficult. It seems to require both heuristic
techniques and problem shifting.

Another unexpected outcome of this research is the illustration of methods useful in the examination
of methodology based theories. Classical philosophical arguments have not been commonly used in the
arena of modern science but may become an integral part of sciences with competing methodologies.
Careful examination of the problems and solutions from research monographs, publication of real
dialogues, and the application of problem shifting and splitting all seem seem to have wider utility. This
might effectively change science back to natural philosophy, which was the scientific form before the
modern scientific revolution, while hopefully retaining the improved modern standards of empirical
evidence.

6.3 Future Work

If the proposed pragmatic approach is to prove valuable, it should result in growth in programming
knowledge in general and especially in the area of algorithm design. One such recent successful result is
improved prime number testing algorithms which are based on more detailed problem analysis. It seems to
me one of the most promising practical areas is better compiler code generation programs, especially for
specialized types of computers such as vector processors and microprocessors in which even a small
improvement in code quality is worth a large amount of effort. Another general area is better problem
specific algorithms to automate the physical design of integrated circuits, placement, auto-routing, and
mask checking.

28

Appendix A

Letter to the editor of Infoworld entitled "Treacherous" by Carolyn Chase:

In the Vol. 5, No. 9 issue, your frontpage article entitled "Western Electric may market four micros"
states that "it is assumed that the first software for the new systems will be ported in Western
Electric’s popular Pascal-like language called C."

To state that C is a Pascal-like language is a deception at best. C flies in the face of all software
methodology pertaining to language design researched in the last ten years.

C is a hacker’s delight and a management and maintenance nightmare.

A portable assembly language, C is not block structured, has no type checking and is cryptic to read
(to name a few important faults).

It is interesting to note (but not really surprising) that managers are choosing to program in C, and
"old" and unstandardized language, in an industry growing so fast that staff turnover is very high and
the schools cannot possibly meet the demand for the skilled talent. Of course, this also underlines the
requirement for portable (i.e. reusable) code which is a major force for many turning to C over other
choices such as Pascal, Modula-2 or even Ada.1

1. Chase[1983], p. 28.

29

References

Ashenhurst[1979] Ashenhurst, R. L. (ed.) Comments on social processes and proofs. CACM. 22,
11(1979), 621-630.

Bitner[1982] Bitner, J. R. An asymtotically optimal algorithm for the Dutch national flag
problem. SIAM J. Comp. 11, 2(1982), 243-262.

Burstein[1982] Burstein, M., Hong S. J., Nair, R. Spatial distribution of wires in master-slice VLSI.
Proceedings IEEE International Conference on Circuits and Computers, 1982,
265-269.

Cioffi[1974] Cioffi, F. Freud and the idea of a pseudo-science. in Borger, R, and Cioffi, F. (eds.)
Explanation in the Behavioral Sciences, Cambridge University Press, 1974, p. 474.

Cook[1976] Cook, S. A. A short proof of the pigeon hole principle using extended resolution.
SIGACT News (ACM) 8, 4(1976), 28-32.

Cote[1980] Cote, L., and Patel, A. The interchange algorithms for circuit placement problems.
Proceedings 17th Design Automation Conference, 1980, 528-534.

Demillo[1977] De Millo, R. A., Lipton, R. J., and Perlis, A. J. Social processes and proofs of
theorems and programs. Conference Record ACM Symposium on Principles of
Programming languages, 1977, 206-214.

Demillo[1979] De Millo, R. A., Lipton, R. J., and Perlis, A. J. Social processes and proofs of
theorems and programs. CACM. 22, 5(1979), 271-280.

Dijkstra[1972a] Dijkstra, E. W. Notes on structured programming. in Structured Programming.
Dahl, O. J., et al., Academic Press, 1972.

Dijkstra[1972b] Dijkstra, E. W. The humble programmer. CACM. 15, 10(1972), 859-865.
Dijkstra[1975] Dijkstra, E. W. Craftsman or scientist. Proceedings of the 1975 Pacific ACM

Conference, San Francisco, 1975, 217-223.
Dijkstra[1976] Dijkstra, E. W. A Discipline of Programming. Prentice Hall, 1976.
Dijkstra[1982] Dijkstra, E. W. Selected Writing on Computing: A Personal Perspective. Springer

Verlag, New York, 1982.
Dijkstra[1978] Dijkstra, E. W. On a political pamphlet from the middle ages. SIGSOFT Software

Engineering News (ACM) 3, 2 (1978), 14-18.
Feyerabend[1975] Feyerabend, P. Against Method. Humanities Press, London, 1975.
Fiduccia[1982] Fiduccia, C., and Mattheyses, R. A. A linear-time heuristic for improving network

partitions. Proceedings 18th Design Automation Conference, 1982, 175-181.
Floyd[1979] Floyd, R. W. The paradigms of programming. CACM. 22, 8(1979). 455-460.
Gotshalks[1978] Gotshalks, G. J. Analysis of the Dutch national flag algorithm and refinements.

Computer Science Research Report, York University Downsview, Ontario Canada,
December, 1978.

Hanan[1972] Hanan, M., and Kurtzberg, J. Placement techniques. In M. Breuer, (ed.) Design
Automation of Digital Systems, Vol. 1, Prentice Hall, 1972, 213-282.

Hanan[1978] Hanan, M., Wolff, P., and Agule, P. A study of Placement techniques. Journal of
Design Automation & Fault-Tolerant Computing. 2, 2(1978), 28-61.

Hoare[1962] Hoare, C. A. R. Quicksort. Computer Journal. 5, 1(1962), 10-15.
Jonassen[1977] Jonassen, A. Analysis of the "Dutch flag problem". Institute of Informatics

Research Report, University of Oslo, Norway, 1977.
Jones[1977] Jones, N. D. and Muchnik, S. S. Even simple programs are hard to analyze. J. ACM

2, 24(1977), 338-350.
Kanada[1981] Kanada, H., et. al. Channel-order router--A new routing technique for a masterslice

LSI. Journal of Digital Systems 4, 4(1981), 427-441.
Kernighan[1970] Kernighan, B. W., and Lin, S. An efficient heuristic procdure for partitioning graphs.

Bell Systems Tech. J. 49, 2 (February 1970), 291-308.
Kernighan[1976] Kernighan, B. W. and Plauger P. J. Software Tools. Addison-Wesley, 1976.
Kirkpatrick[1982] Kirkpatrick, S., Gelatt, C., and Vecchi, M. Optimization by simulated annealing.

30

IBM Research Report, RC 41093, April 1982.
Knuth[1973] Knuth, D. E. The Art of Computer Programming, Vol. 3, Searching and Sorting,

Addison Wesley, 1973.
Koford[1981] Koford, J., and Jones, E. A dev elopment system for logic arrays. Midcon (Middle

Western Electronics Conference), 1981, Chicago.
Lakatos[1970] Lakatos, I. Falsification and methodology of scientific research programmes. In I.

Lakatos and A. Musgrave, (eds.) Criticism and the Growth of Knowledge. scientific
research programmes. Cambridge, 1970, 91-196.

Lakatos[1976] Lakatos, I. Proofs and Refutations. Cambridge, 1976.
Lakatos[1978] Lakatos, I. A renaissance of empiricism in the recent history of mathematics. In I.

Lakatos, Mathematics, Science and Epistemology, Philosophical papers Volume 2,
Cambridge, 1978, 24-42.

Lighthill[1972] Lighthill, J. Artificial intelligence - A general survey. Also known as the Lighthill
Report. Cambridge University, July, 1972.

LSI Logic[1981] LSI Logic Corporation, Silicon gate HCMOS macrocell array LSI 5000 series data
sheet. September 1981.

LSI Logic[1983a] LSI Logic Corporation, CMOS macrocell and macrofunction library. Revision 4,
January 1983.

LSI Logic[1983b] LSI Logic Corporation, ECL macro cell array design manual. Revision A, April
1983.

McMaster[1979] McMaster, C. L. An analysis of algorithms for the Dutch national flag problem.
CACM. 21, 10(1979), 842-846.

Motorola[1980] Motorola Corporation, Supplementary information to MECL 10,000 macro array
preliminary design manual, 1980, 2.

Perky[1977] Perky, G., Deutsch, D., and Schweikert, D. LTX--A minicomputer-based system for
automated LSI layout. Journal of Design Automation & Fault-Tolerant Computing,
1, 3(May 1977) 217-255.

Polya[1956] Polya, G. How to Solve it, second edition, Princeton University Press, 1956.
Popper[1959] Popper, K. R. The Logic of Scientific Discovery. Hutchinson: London, 1959.
Shiraishi[1980] Shiraishi, H. and Hirose F. Efficient placement and routing for master slice LSI.

Proceedings 20th Design Automation Conference, 1980, 458-464.
Soukup[1981] Soukup, J. Circuit Layout. Proceedings of the IEEE, 69, 10 (October 1981)

1281-1304.
Schweikert[1972] Schweikert, D., and Kernighan B. A proper model for the partitioning of electrical

circuits. Proceedings 9th Design Automation Workshop, June 1972, 57-62.
Werner[1982] Werner, J. Computer-aided design and design automation for ICs in Japan, 3,

3(May/June 1982) 206-214.
Wirth[1971a] Wirth, N. The programming language pascal. Acta Informatica.. 1, 1(1971), 35-63.
Wirth[1971b] Wirth, N. Program development by stepwise refinement. CACM. 14, 4(1971),

221-227.

31

CONTENTS

Introduction ... 2
1.1 Background .. 2
1.2 The Nature of Structured Programming .. 2
1.3 Argument Overview ... 2
1.4 Omission of Stylistic Issues ... 3
1.5 Publication History .. 3

A Failure of Structured Programming .. 4
2.1 Introduction .. 4
2.2 The Problem ... 4
2.3 The First Solution .. 5
2.4 Dijkstra’s Refined Solution .. 5
2.5 Another Solution .. 6
2.6 Conclusion ... 8
2.7 Postscript .. 9

A Dialogue on Structured Programming .. 10
3.1 First Version Acknowledgement Letter ... 10
3.2 Dijkstra’s Response to First Version .. 10
3.3 Second Version Submission Letter .. 11
3.4 Second Version Response to Dijkstra .. 12
3.5 Dijkstra’s Response to Second Version ... 12
3.6 Version Two Rejection Letter .. 13
3.7 Rejection Appeal Letter ... 14
3.8 Appeal Response ... 15
3.9 Rejection Explanation .. 16
3.10 Response to Rejection Explanation ... 17
3.11 Third Version Submission Letter ... 18
3.12 Third Version Rejection Letter .. 19

Should Computer Programs be Verified ... 22
4.1 SIGSOFT Letter ... 22
4.2 Postscript .. 23

A Constructive Placement Algorithm for Logic Arrays ... 24
5.1 Introduction .. 24
5.2 The Basic Placement Problem ... 24
5.3 The CMOS Logic Array Placement Problem .. 24
5.4 Algorithm Description ... 25
5.5 Pragmatic Considerations .. 26
5.6 Running Time .. 26
5.7 Results .. 26
5.8 Discussion .. 26
5.9 Postscript - Comparison with ECL placement ... 27

Discussion ... 28
6.1 Evaluation .. 28
6.2 Subsidiary Results ... 28
6.3 Future Work ... 28

Appendix A ... 29

i

References ... 30

ii

LIST OF FIGURES

Figure 1. Simple DNF Program ... 5

Figure 2. Dijkstra’s Refined Program .. 7

Figure 3. More Efficient Program .. 8

iii

