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(57) ABSTRACT

An HDL circuit conversion and simulation method is
described. One or more HDL source modules are converted
to simulation program libraries and simulated. The simula-
tion system and method compiles HDL models into linkable
libraries. Resulting libraries include calls to the HDL’s PLI
so that the libraries along with HDL source can be simulated
using any simulator of the HDL. The host simulator provides
scheduling and system operations that are requested by the
linkable simulation program libraries produced by the simu-
lation system here disclosed. The system and method is
called an HDL simulator independent PLI based model
compiler. The simulation system allows utilization of HDL
simulator advances without changing linkable libraries.
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Figure 1 - Examples of Verilog constructs - Prior Art

/f illustration of Verilog constructs
module verilog_example(out, a, b, reset);
/f Port construct

output [7:0] out;

input [7:0] a, b;

inout reset;

// Varible construct

wire internal_reset, q, qn, cp, d, clk;
regrl, 12, 13;

reg [31:0] magic_val;

reg my_memory [32'hffff, 0];
integer proc_counter;

// Parameter construct
parameter adder_width = 16;

// Instance constructs
chip3 arbiter(out, a, b);
dff1 dff{(out[0], qu, cp, d);

// Gates

and gl(clk, 11, r2);

udp3 g2(out[0], qn, cp, d);

assign (weak0, pulll) #(10, 20, 30) clk=rl & 12;

// Scheduled procedural construct
always @(out[0] or internal_reset)
begin
/1 timing free procedural construct
rl =12;
magic_val=0;
for (proc_counter = 0; proc_counter < adder_width;
proc_counter = proc_counter + 1)
begin
magic_val = magic_val*proc_counte;
end
rl = “magic_val;
end

/* system task construct
always wait (posedge clk) $display("clk posedge at %t", $time);

/* user PLI system task construct */
initial
begin
$pli_init_my memory(my_memory, 1'bx);
end

/* specify path and timing check constructs
specify

specpararm tOh = 3.0;

specparam t0} =5.0;

(in => out[3]) = (tOh, tOh, t0l, t01, t01, t01);
$setup(posedge clk, d, 4.33, 2.99);
endspecify

endmodule
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SIMULATOR INDEPENDENT OBJECT CODE HDL
SIMULATION USING PLI

CLAIM TO PRIORITY

[0001] The present application claims priority to earlier
filed continuation application No. 09/668,109, filed Sept. 22,
2000, entitled “Simulator Independent Object Code HDL
Simulation Using PLI” which claims priority to United
States Provisional Patent Application No. 60/156,732, filed
Sept. 30, 1999, and entitled “System and Method for Trans-
lating and Verifying Electronic Hardware Models.” The
identified provisional and utility patent applications are
hereby incorporated by reference.

BACKGROUND OF THE INVENTION
[0002] 1. Field of Invention

[0003] This invention generally relates to a simulation
method and apparatus, and, in particular, for converting and
simulating electronic circuits coded in Hardware Descrip-
tion Languages (HDL). The method and apparatus takes as
input one or a plurality of HDL modules and creates one or
a plurality of binary machine code linkable libraries that are
linked with an HDL simulator to verify an electronic circuit.
The system and method is a new type of model compiler that
utilizes a specialized software application programming
interface (API) called a programming language interface
(PLI). The system and method is used in verifying logic and
timing of semiconductor integrated circuits in the field of
electronic computer aided design (ECAD).

[0004] 2. Prior Art

[0005] Because of advances in integrated circuit (IC)
technology, it is now possible to design an entire system on
one chip (SoC). This advance creates a need for the ability
to combine many subcircuits into one HDL system model
that can be verified using simulation. Although HDLs for
digital circuits are most common analog and mixed signal
have been defined. Additionally, HDLs for some circuit
aspects not yet discovered may be defined in the future.

[0006] Because of the high complexity of modem elec-
tronic systems, there is economic advantage to have the
ability for enterprises to specialize in designing one type of
subcircuit such as DVD decoders. The final SoC system then
comprises HDL descriptions from many sources. Such sub-
circuit or subsystem models are called soft IP (intellectual
property) because they are defined by an HDL program and
because the model is transistor type independent. For
example, a soft IP model can be fabricated using CMOS
technology for low power applications and using gallium
arsenide for high speed applications. Soft IP is contrasted
with hard IP in which subcircuits are defined as wafer
fabrication mask patterns.

[0007] The current electronic system design steps are:
[0008] 1. Determine system specifications

[0009] 2. Verify correct architectural function

[0010] 3. Convert specifications into HDL definition
[0011] 4. Verify correct system logic and timing
[0012] 5. Convert HDL to physical layout (called

physical design)
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[0013] Steps 3 and 4 are called logic design. The system
and method here described accomplishes step 4 above.
Logic design uses the hardware description language (HDL)
to represent circuit information. The conversion from speci-
fication to logic gate level HDL model can be direct or,
alternatively, a procedural HDL model (sometimes called
RTL or behavioral model) can first be created and the
procedural HDL code can then be synthesized into a gate
level HDL model. Using the logic design HDL description
created in step 3, the HDL description is verified in step 4
using a computer program called an HDL simulator.
Although, sometimes other verification methods such as
formal verification are used, other methods are used in
conjunction with HDL simulation.

[0014] I. Current HDLs

[0015] Currently, the most commonly used HDL is called
Verilog. Another HDL is called VHDL. A number of new
HDLs are under development such as Superlog and SDL.
Many simulators are available for simulating correct logic
and timing function of Verilog HDL models. Steps 3 and 4,
described above, used in modern circuit design replace the
original design method that required physical prototyping by
building PCBs using a technique called bread boarding.
HDLs are now routinely standardized by U.S. or interna-
tional standard organizations such as IEEE or ISO. The
Verilog HDL is standardized as IEEE standard P1364 and
the VHDL HDL is standardized as IEEE standard P1076.
HDL standardization allows many different circuit design
tools from multiple vendors to be used to verify a given HDL
system model.

[0016] II. Module as Basic HDL Construct

[0017] HDLs describe circuits in modular form. For Ver-
ilog, each module is defined between a pair of reserved
words “module” and “endmodule” as shown in FIG. 1. A
plurality of modules may be provided in sequence and
modules may be arranged in hierarchical structure. When a
module is nested in another module, the nested module is
called an instance. A system model contains the combination
of the plurality of source files containing module definitions
plus any HDL library files containing module definitions.
Library module definitions are only included in the complete
HDL system model if they are needed to resolve an unre-
solved instantiation.

[0018] I1l. HDL Module Constructs

[0019] HDL modules contain the following language con-
struets (see FIG. 1—line number references used below all
refer to FIG. 1):

[0020] 1. PORTS: Port types are input, output, or
inout. Inout ports propagate signals in both direc-
tions (lines 6-10).

[0021] 2. VARIABLES: Variables are local to mod-
ules and are register variables that model registers
and programming language variables or wires that
behave like circuit wires, i.e., have fan-in, fan-out,
and float to high impedance if not actively driven
(lines 13-17).

[0022] 3. PARAMETERS: Parameters are named
constants (line 20).

[0023] 4. INSTANCE CONSTRUCTS (instantia-
tions): Since HDL system descriptions are hierarchi-
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cal instances, HDL descriptions of systems are usu-
ally coded top down. Top level modules normally
provide system testing environment (called test scaf-
folding) containing one or a plurality of instantia-
tions of a system model and HDL code to provide
system input stimuli and check system output. Inside
a module, the various subcomponents of a system are
instantiated. For complex systems, there many be
many instances of a given subsystem. Each of which
is separately instantiated. For SoCs, all instances are
fabricated onto one chip (lines 23-24).

[0024] 5. GATE AND CONTINUOUS ASSIGN
CONSTRUCTS: Procedural constructs are used for
high level modeling and are easy for people to code
but are too far from actual hardware devices to be
input to physical design. HDLs also allow gates and
switches that correspond to actual IC devices to be
modeled. Gates and instances are declarative. There-
fore, unlike procedural constructs, order within a
module definition has no effect on what is modeled.
Gates may have delays. But even for gates without
delays, gate evaluation must be scheduled using
event driven semantics for accurate timing level
HDL verification.

[0025] Continuous assignments are the same as gates
except the right hand side expression for continuous assign-
ments is an arbitrary expression. Many HDLs allow user
defined gates that are defined using tables. In Verilog such
gates are called UDPs (lines 27-29).

[0026] 6. PROCEDURAL CONSTRUCTS: Proce-
dural constructs model behavior using parallel HDL
“program” execution. Some procedural constructs
such as delay controls, always blocks, and fork-join
require scheduling. These are called scheduled pro-
cedural constructs. Some constructs just compute
new values. They are called timing free procedural
constructs. Usually a block of timing free procedural
code is preceded by and triggered by scheduled
procedural code that synchronizes behavioral model
execution. HDLs also allow definition of reused
groups of statements as tasks or functions. In Ver-
ilog, tasks contain both scheduled and timing free
procedural constructs. Functions only contain timing
free procedural constructs (lines 32-46).

[0027] 7. SYSTEM TASK AND FUNCTION CON-
STRUCTS: These operations provide testing and
debugging HDL features. For example, the $display
system task allows printing from within HDL mod-
els. $time is a system function returning current
simulation time. $readmem is a complex system task
that reads from a computer data file and fills an HDL
memory. System constructs correspond in HDL

modeling to operating system services on computers
(line 46).

[0028] 8.USER CODED PLI CONSTRUCTS: Since
a complex SoC system contains many different sub-
systems from many different sources, system HDL
models typically contain many levels of modeling
from switches and gates that are directly fabricated,
through behavior and RTL models that are synthe-
sized to gates, to abstract computer program models.
Such high level computer program models are writ-
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ten using an HDL’s standardized application pro-
gramming interface (API) called the programming
language interface or PLI. The services provided by
the PLI for most modern HDL’s allow access to and
invocation of all HDL constructs (line 51).

[0029] 9.INPUTTO OUTPUT PATH DELAY CON-
STRUCTS (specify block): In addition to distributed
gate delays, HDLs allow coding input to output path
delays. In Verilog, the construct is called the specify
block that contains delay paths and timing checks.
Delay paths require scheduling of values assigned to
circuit outputs by delaying procedural (behavioral)
or RTL output changes until the path delay has
elapsed. Another type of constant parameter is called
a specparam (lines 55-61). IV. HDL Simulation
Methods

[0030] Recent advances in HDL simulation have resulted
in many different specialized simulators that all work from
a common and standardized HDL system model. Some types
of simulation are:

[0031] 1.INTERPRETED SIMULATION: This type
of simulation is good for debugging and accurate
timing validation but slower than some other meth-
ods.

[0032] 2. COMPILED SIMULATION: This type of
simulation is a faster simulation so that more test
patterns and system operations are simulated in a
given period of time, but compiled simulation sac-
rifices debugging access to model details.

[0033] 3. CYCLE BASED SIMULATION: Similar
to compiled simulation, cycle based simulation
allows very fast simulation for regularly clocked
systems such as microprocessors allowing actual
computer instructions to be validated by simulation,
but intra-cycle timing verification is inaccurate.

[0034] 4. HARDWARE ACCELERATOR BASED
SIMULATION: This type of simulation is a simu-
lation algorithm that is implemented in computer
hardware allowing for very fast simulation. How-
ever, hardware accelerator-based simulation is usu-
ally limited to gate models and the time to elaborate
and load an HDL system description before simula-
tion starts is long.

[0035] 5. SYMBOLIC SIMULATION: Symbolic
simulation is currently being researched.

[0036] V. Modern Computer Program Linking

[0037] Originally an executable binary computer program
was constructed by linking together a plurality of compiled
computer language files into one non-relocatable binary
executable program. However, modem software develop-
ment tools allow a number of different methods for con-
structing a binary executable program. These methods
include:

[0038] 1. PARTIAL LINKING: Partial linking pro-
vides for a plurality of object files to be partially
linked into a new object file. First, each computer
language source is compiled into a relocatable object
file called an .o file. The plurality of .o files are
partially linked to make one new relocatable .o
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object file. The new partially linked relocatable
object file is then linked with other object files to
construct a binary executable.

[0039] 2. DYNAMIC LIBRARIES: Dynamic librar-
ies contain elements referenced symbolically in
object files so that a dynamic library may be changed
but still allow linking with previously linked object
files. This allows libraries and programs to be devel-
oped and changed independently. Dynamic libraries
are often called .so files or DLLs since they contain
symbolic references. A binary executable program is
created by linking any or all of .0 object files,
partially linked .o object files and dynamic library .so
files.

[0040] 3.DYNAMIC LINKING: In dynamic linking,
the executing program loads and links dynamic
libraries while running using a predefined Operating
System API that provides routines for loading and
linking (and unloading) program objects (routines
and data structures).

[0041] This allows a program to start executing, decide
what dynamic libraries need to be loaded, and then make
calls to the dynamic linking API to only load libraries
needed for the particular run. The routines in the API
typically start with a dl prefix: dlopen, dlclose, dlsym, etc.
One or more user source files must be compiled and linked
using special dynamic library commands to prepare them for
later dynamic linking. In HDL simulation, user PLI pro-
grams are typically dynamically loaded.

[0042] VI. PLI Description

[0043] HDL PLIs allow linking programs written in com-
mon programming languages such as C to be compiled into
one or a plurality of object libraries that are then linked with
an elaborated HDL system model just before simulation
begins. Any programming language code can be included in
the PLI program. HDL definitions define names, functions,
and actual parameters of program language routines that
user PLI programs call to interact with HDL simulator.

[0044] HDL PLIs have been used in other inventions in the
circuit simulation area. See for example U.S. Pat. No.
5,774,380, “State Capture/Reuse for Verilog Simulation of
High Gate Count ASIC” that uses the PLI for accessing and
re-using circuit simulation state.

[0045] For example, in Verilog the routine vpi_register_cb
is used to register a user program function (called a call
back) that is called by an HDL simulator when the specified
event happens such as change of a wire. It takes a PLI
defined record called a cb_data structure as its one argument.
HDL PLIs are very similar to other APIs that, for example,
allow middle ware to be used with computer operating
systems and electronic simulators.

[0046] HDL PLIs define at least five basic routine classes:

[0047] 1. ROUTINES THAT REGISTER CALL
BACKS: Call backs allow the HDL simulator to call
a user program routine when a particular event
happens such as: a particular system task is executed
($pli_memory_model in FIG. 1), a net or variable
changes (for example to monitor every time an
output of a particular instance changes), or a simu-
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lation related event occurs (for example when simu-
lation time reaches 1000).

[0048] 2. ROUTINES THAT ACCESS VALUES:
HDL system model values are read using value
access routines. In Verilog the routine is called
vpi_get_value. It reads the value of any object that
has a value. For example, the value that a system task
recently returned (if task is not active) or the value
that will be returned (if task is active) can be read.

[0049] 3. ROUTINES THAT ASSIGN VALUES:
HDL system model values are written using value
setting routines. In Verilog the routine is called
vpi_put_value. Values are normally written to nets
and regs after a given delay has elapsed when the
delay type argument is properly set and a delay
record is passed as another argument.

[0050] 4. ROUTINES THAT ALLOW ACCESS TO
HDL CONSTRUCTS: HDL source construct access
routines (see “Background of the Invention” section
III) allow determination of exact details of HDL
circuit description. In Verilog the one-to-one HDL
construct access routine is named vpi_handle and the
one-to-many access routine is named vpi_iterate.

[0051] For example, vpi_iterate is used to access all ports
for a given instance. vpi_handle is used to access instance
connections to a port called vpiHighConn or port connec-
tions inside a module called vpiLowConn. Most HDLs
allow complete HDL source reconstruction using PLI access
routines.

[0052] 5. ROUTINES THAT ALLOW DELAY
READING AND WRITING: HDL delays are read
and written using the PLI delay routines. In Verilog,
routine vpi_get_delays is used to read delays and
vpi_put_delays is used to set delays. PLI delay
reading and writing is normally used before simula-
tion begins.

[0053] In operation, an HDL simulator is informed that
one or a plurality of user PLI programs must be loaded and
executed with a predefined table of call back routines that
the simulator reads when it begins running if the table has
been linked into the simulator binary. If no PLI routines
exist, the predefined table is empty. If many different PLI
programs are used during an HDL simulation there will
normally be one start up call back routine in the predefined
table for each PLI application (see “Background of the
Invention” section VI, item 3).

[0054] The Verilog PLI is defined more completely in
“IEEE Std 1364-1995 Verilog Hardware Description Lan-
guage Reference Manual.” TEEE Standards Board. chap.
17-23, IEEE: New York, 1996, which is hereby incorporated
by reference.

[0055] VII. System on a Chip Design

[0056] SoC systems normally consist of a plurality of
subsystems designed by different enterprises. In older elec-
tronic systems, subsystem components consisted of different
physical ICs that could be fabricated and tested indepen-
dently and then assembled into final electronic systems. SoC
systems consist only of HDL descriptions that are used as
input to physical design (design step 5 above). Although
subsystems can be separately verified by HDL simulation,
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once an SoC IC is fabricated, subsystems lose identity and
only the entire fabricated SoC ICs are tested.

[0057] The ability to fabricate entire systems on one IC
has led to specialization. One type of specialized subsystem
design enterprise is called a soft IP (intellectual property)
vendor. Such enterprises design subsystems as HDL models
of function and timing. For example, IP vendors may
specialize in DVD decoders or memory subsystems. Soft IP
models coded as HDL circuit descriptions are then licensed
to system design enterprises. Although, the most common
need for the system and method of the present invention is
for third party soft IP vendors to protect their technology,
system vendors may design systems by decomposing sys-
tems into subsystems each of which is designed separately
and converted into a soft IP model. Here, there is no need to
protect IP because it was developed by system vendor, but
the design approach assists in the parallel development of
subsystems.

[0058] Because of electronic design specialization, there is
a need to combine into one system simulation a plurality of
subsystems HDL models created by different enterprises.
From the system vendor’s perspective, there is a need for a
well-defined interface so that problems are isolated to par-
ticular soft IP models. From the perspective of soft IP
vendors, there is a need for protection of their IP and a need
to provide whatever level of separability and observability
that is needed by the system vendor. Other IP protection
methods such as water marking that allows for the tracing of
unauthorized copying or steganography that embeds secret
messages in HDL source or object code libraries is not
useful for soft IP model intellectual property protection
because the objects that need protecting are the conceptual
circuit design not the HDL or object library representation.
Copying occurs and copy protection is needed downstream
when the soft IP model is fabricated as part of an SoC.

[0059] VIIL. Soft IP Model Conversion and Simulation

[0060] In the art, there are currently five basic systems and
methods for addressing the SoC conversion simulation prob-
lems described above. They are:

[0061] 1. DISTRIBUTE “AS IS” HDL: In this, the sim-
plest method, the soft IP vendor supplies HDL source to
system vendor. This method satisfies neither the system
vendor nor the soft IP vendor because there is no well
defined interface, there is no way to determine the source of
system simulation failure, there is no way to detect sub-
system HDL changes, and there is no way to protect intel-
lectual property. The subsystem internal state is available but
there is no soft IP vendor control of that observability. Thus,
this first method is virtually no method at all.

[0062] 2.DISTRIBUTE ENCRYPTED HDL.: In this
method, the soft IP vendor supplies encrypted HDL
source to the system vendor. This method is used by
the Verilog XL protect/endprotect feature. Although
this system and method provides some protection for
subsystem IP, it suffers from a number of problems
and limitations. First, because the subsystem is still
supplied as an HDL source, there is no well defined
interface for problem isolation and there is no con-
trolled access to subsystem internal state.

[0063] Second, there are problems with IP protection. The
encryption key is built into the simulator so that if the
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encryption scheme is cracked, every protected soft IP model
can be decrypted. In fact, in the mid 1990°s, the method used
in the Verilog XL protect scheme was cracked and posted on
the Internet. In general, for any encryption scheme, because
the key is embedded in the simulator computer program, the
key can be found by disassembly. Also, because the simu-
lator vendors usually have divisions that compete with soft
IP providers, the protected HDL is not protected from
simulator vendors but rather only from system designers.
This method is also simulator specific so that the soft IP
vendor must distribute different protected source for each
simulator. Finally, because currently only one simulator
vendor supports encrypted models, this method is generally
not usable.

[0064] 3. HAND CODE COMPUTER PROGRAM
FOLLOWING OMI MODEL STANDARD: In this
instance, the IP vendor develops and maintains two
versions of the soft IP models. The version that is
distributed is a computer program that uses the
standardized OMI API to communicate with simu-
lator. The current most commonly used API is the
standardized OMI interface standardized as IEEE
P1499 standard. This system and method provides a
well defined user interface with controlled observ-
ability and provides IP protection for the soft IP
vendor, but suffers from a number of model devel-
opment and verification limitations.

[0065] First, only a small subset of HDL modeling con-
structs are provided (see FIG. 1). This limits the soft IP
model accuracy especially in the area of timing accuracy.
The OMI computer program model is generally limited to
subsystem /O port wave form modeling. However, the most
serious problem with this method is that soft IP vendor must
develop and maintain two separate and unrelated models.
One detailed HDL model and a separate computer program
using OMI API. This makes subsystem problem isolation at
least twice as difficult and time consuming.

[0066] 4. SIMULATOR SPECIFIC MODEL COM-
PILER: Because of advances in computer program
linking techniques (see “Background of the Inven-
tion” section V above), for simulators that work by
compiling HDL source to object code, it is possible
to modify the HDL elaboration step to produce
linkable object files that are then linked into a final
simulation executable program. This modified simu-
lator and elaborator is called a model compiler. It
allows soft IP vendors to compile IP models to object
files. The soft IP vendor then distributes the one or a
plurality of object files to system vendor.

[0067] This system and method provides a well-defined
user interface with controlled observability. The HDL to
object code compiler is instructed to preserve or not preserve
I/O port and internal node observability. It also provides IP
protection because the produced object file is usually large
and because most instruction sequences are similar. It does
not protect the IP from the simulator vendor since the
simulator vendor is the developer of the program that
compiles the soft IP model. However, this system and
method is a significant improvement for compiled simula-
tors over methods 1-3 above.

[0068] However, this system and method does suffer from
two significant problems. First, it only works with simula-
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tors that compile code to binary object code. As discussed in
section IV above, the model compiler method only works
with the type 2. simulation method. This method is not
usable with the current most popular Verilog simulator
called Verilog XL that is an interpreted simulator. Inter-
preted simulators such as XL offer significant system debug-
ging advantages. The second problem is that method is not
simulator vendor independent. Therefore, the soft IP vendor
must distribute different binary object files for every type of
simulator. Also, since the method depends on the internal
simulator data structures, when major internal changes are
made to a given simulator, a new soft IP object file must be
created and distributed.

[0069] 5.PACKAGE SIMULATOR EXECUTABLE
WITH EACH MODEL: This is a variant of method
4 above that attempts to overcome the limitations of
method 4. In this instance, the soft IP vendor ships
both a model from any or all of methods 1-4 above
and the particular simulator it is created with. The
simulators then communicate by sharing data. Vari-
ous methods for sharing data are used such as shared
files, operating system (OS) shared memory, or OS
pipes. The advantage of this method is that it is
simulator independent since each soft IP model is
distributed with its own simulator, then the system
vendor can use any simulator to simulate its part of
system model.

[0070] However, this method suffers from serious prob-
lems. For instance, the system vendor must license and
maintain multiple simulators, although all simulators may be
sublicensed through soft IP vendors. Also, data transfer and
synchronization of the various subsystems becomes difficult
and slow. This method is a step backward from modern API
based interfaces and inferior to 4 above.

[0071] While HDL circuit conversion principles as
described above and their potential use in facilitating spe-
cialization and creation of soft IP development enterprises
are known in the prior art, there is no known method with
the advantages of the simulator independent system and
method disclosed herein.

[0072] Accordingly, it is the object of this invention to
provide a system and method that allows or protection of
soft IP vendor intellectual property from unrelated third
parties, from system vendor licensees, and from simulator
vendors. The IP protection is generally superior to any
encryption method since the simulation program must store
both the key and the decrypted HDL source that can be
determined by dis-assembly of the simulation program. IP
protection is generally superior to any simulator specific
model compiler, because a simulator vendor does not know
the details of the converted library object code and because
the model compiler vendor is able to shroud and/or obfus-
cate the object code without increasing simulator develop-
ment difficulty.

[0073] Accordingly, it is also the object of this invention
to provide a system and method that simplifies soft IP model
distribution by allowing one object file to be linked to any
HDL simulator on a give platform architecture type (such as
X86 or Sparc).

[0074] Accordingly, it is also the object of this invention
to provide a system and method that substantially eliminates
the need for any open model interface (OMI) standard such
as IEEE P14999.
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[0075] Accordingly, it is also the object of this invention
to provide a system and method that is tightly coupled to a
simulator’s simulation mechanism to allow utilization of
simulation advances and efficiency that only a tightly linked
API can provide. The system and method described here
functions like a biological virus by communicating instruc-
tions that are executable by the host simulator using the PLI
APL

SUMMARY OF THE INVENTION

[0076] In accordance with one aspect of the present inven-
tion, there is provided a method for converting soft IP HDL
models into binary object code for use in system simulation.
In its preferred embodiment, an HDL soft IP model is
converted to a binary object code library by first translating
the IP model into C intermediate code and then compiling
the C code to a binary object code library. The parallel and
time related aspects of simulation are provided by the
standardized HDL simulator. The generated intermediate C
code and the final binary code call PLI routines for services
and to register converted HDL routines that are executed
when delays, parallel synchronization events, or changes
occur.

[0077] The present invention is generally comprised of the
following steps:

[0078] Extracting net list and program statements from
HDL. The net list is generally all procedural blocks and
functions, and all declarative gates, delays, and assignments.

[0079] Building an internal data structure from the net list.
In the preferred embodiment, a graph-based data structure is
used for declarative elements and an expression tree-based
data structure is used for procedural elements.

[0080] Separating (or in other words, classifying or dis-
criminating) each HDL construct in preparation for further
processing.

[0081] In apreferred embodiment, intermediate form code
is generated for each separated HDL construct. Also, HDL
constructs such as wired gates or delay lines may imply
creation of other HDL constructs. Intermediate code for
those implied constructs is also generated.

[0082] Generating programming language code from the
intermediate code. In a preferred embodiment, C computer
language code is generated and written to a file. The C code
is grouped into a number of code types including: (1)
Evaluation C code to evaluate expressions and assignments;
and (2) Scheduling C code to delay events by calling the PLI
and interacting with the simulator scheduler.

[0083] Compiling generated C code into binary object
code that is stored in a dynamic library. In an alternative
embodiment, the binary object code is generated directly
without first generating the C code and, thereby, eliminating
the need for the C compiler.

[0084] Distributing converted the converted binary object
code files to system developers for use in system simulation.
The HDL PLI contains a dynamic object library loading and
executing function. The generated C code uses PLI API calls
to properly initialize and execute during a system simula-
tion.

[0085] It is therefore an object of this invention to provide
an HDL simulator independent soft IP model conversion
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system and method. Other objects, advantages, and features
of this invention include, but are not limited to: the protec-
tion of soft IP vendor intellectual property, the production of
a converted object library trhat runs with substantially any
HDL simulator thereby simplifying soft IP model prepara-
tion and distribution, and the substantial elimination of the
need for open model interface standards such as the IEEE
P1499 OMI standard. Other objects, advantages, and fea-
tures of the present invention will become apparent from the
following detailed description when considered in conjunc-
tion with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

[0086] FIG. 1 is a prior art listing showing language
constructs in the Verilog HDL. Examples of the various
types of Verilog HDL language constructs are shown.

[0087] FIG. 2 is an overview flowchart of HDL to object
library conversion steps.

[0088] FIG. 3 is a flowchart of the steps that are used for
system simulation in using the converted object code library
created according to FIG. 2.

[0089] FIG. 4 is a block diagram of a generic computer
system that is used with the present invention.

[0090] FIG. 5 is a flowchart of the steps for generating C
code for initial/always blocks, which are used to start
simulation.

[0091] FIG. 6 is a flowchart of the steps for generating C
code for timing free procedural constructs.

[0092] FIG. 7 is a flowchart of the steps for generating C
code for procedural event controls.

[0093] FIG. 8 is a flowchart of the steps for generating C
code for procedural delay controls.

[0094] FIG. 9 is a flowchart of the steps for generating C
code for declarative gates.

[0095] FIG. 10 is a flowchart of the steps for generating
C code for declarative delay paths.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0096] In accordance with the principles of the present
invention, an electronic subsystem (soft IP model) coded in
hardware description languages (HDL) is converted into one
or a plurality of object libraries that are linked with an HDL
simulator to execute system simulation. In the preferred
embodiment of the system and method, the programming
language interface (PLI) application programming interface
(API) is utilized to the maximum extent possible. As dis-
cussed below, other possible embodiments that make lesser
use of the PLI API are disclosed.

[0097] PLI based systems function only through call
backs. Any HDL simulator may function as the main pro-
gram. The simulation system of the present invention oper-
ates by registering call back programming language func-
tions that are “called” by a simulator according to the call
back reason. Because the HDL simulator already provides
much of the needed functionality that is invoked and con-
trolled by the PLI programming language routines, the
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computer program implementing the system of the present
invention need only be of medium complexity and size.

[0098] The simulation system and method generally com-
prises a set of operations performed to convert an HDL soft
IP model into a linkable object code library and a set of steps
performed during system simulation to link in and execute
the converted object code library. Referring to FIG. 2, the
one or more HDL files that comprise the soft IP model
undergo syntactic analysis by a simulator or other program
that provides the source PLI access. The HDL PLI is then
used to scan the HDL source and the net list is extracted is
shown by block 210. As an alternative embodiment, the
HDL is subjected to syntax analysis comprising lexical
analysis, first pass syntactic analysis that constructs a sym-
bol table, and second pass syntactic analysis that builds the
internal data structure without using source scanning PLI.

[0099] During the net list extraction, an internal data
structure is constructed, see block 220. For procedural
constructs (programming language-like constructs num-
bered 2, 3, 6, and 7 in “Background of the Invention” section
III above), normal compiler internal data structure is con-
structed. In the preferred embodiment, a statement list and
expression trees are constructed. Although many other
embodiments are possible such as virtual byte code or four
tuples. For declarative constructs (HDL construct types 1, 4,
5, and 9 in “Background of the Invention” section III above)
in the preferred embodiment, the net list data structure
described in a paper of S. Meyer, “A data structure for circuit
net lists”, Proceeding 25th ACM/IEEE Design Automation
Conference, 1986, pp. 613-616, which is hereby incorpo-
rated by reference, is constructed. This data structure has
numerous advantages in computing circuit connectivity and
signal net drivers and loads.

[0100] Once the internal data structure is built, per block
220, the various HDL constructs stored in the internal data
structure are partitioned or separated out by the type of
object code that will eventually need to be generated, i.e., the
operations of the HDL model are defined from the data
structure, see block 230. The separation is roughly by the
type of PLI action that will be required: value change
monitoring, value setting, expression evaluating, delay
scheduling means. In the preferred embodiment, the sepa-
ration is accomplished by programming language case or
switch statements. The bodies of the case statements execute
the succeeding steps as defined in FIG. 2. It should be noted
that, although in developing the computer program to imple-
ment the simulation system and method the operations occur
in sequential steps, during program execution the steps are
intermixed.

[0101] After the separation step, per block 230, each
discriminated or classified HDL construct stored in the
internal data structure is converted to intermediate code as
shown in block 240. In an alternative embodiment, the
intermediate code step can be eliminated and the C code
generated directly, i.e., remove blocks 240 and 250. In the
preferred embodiment, the intermediate code is converted to
computer language code in the popular C computer lan-
guage, however, any other computer language, such as C++,
could be used. For concreteness, the discussion in the
remainder of the present section uses only conversion into C.
The preferred embodiment has the advantage that optimi-
zations and shrouding or obfuscation operations (applied to
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C code but expressed in compiled output object code) are
applied during C code generation from the intermediate code
more easily.

[0102] HDLs commonly have constructs that require
simulation by the PLI model object code although there is no
explicit construct in HDL source, i.e., they are implicit. The
most common implicit constructs are logic gates imple-
mented by wire connections (called “wired or” and “wired
and”), delay lines (delay logic gates) implemented by trireg
wire type in Verilog and continuous assignments implied by
instance input and output ports. As shown in block 250, the
internal data structures built in block 220, are scanned to
locate implicit constructs. The implicit constructs are then
analyzed and intermediate code is generated.

[0103] Next as shown by block 260, C code is generated
(written to a.c file). Because HDL PLIs work by first
registering call backs of programming language routines and
then executing routines when call back reasons occur, the C
code generation phase outputs initialization code that is run
during system simulation setup (see FIG. 3) is written to one
file and the call back action code (code that “simulates™) is
written into another file. In an alternative embodiment, all
code may go into one file or, in still another embodiment,
each separate call back routine may be written into a
separate file. It should be noted that, although separate
routines can be generated for every call back, in the pre-
ferred embodiment, a small number of generalized call back
routines are generated and jump tables or switch statements
are used. This defers processing to later fixed time points and
groups all related call backs and related objects so that all
processing can be done in one routine with only one call
back. This significantly improves the soft IP model simula-
tion speed.

[0104] Once the C code has been generated, per block 260,
a programming language compiler is used to compile the
generated C code into one or more dynamic object code
libraries, see block 270. In an alternative embodiment,
assembly or binary library object code is generated directly.
This reduces model compilation time at the cost of increased
model compiler program complexity. Once compiled, the
dynamic library of the soft IP model may be distributed for
use in system simulations, see block 280.

[0105] In accordance with the principles of the present
invention, use of the compiled soft IP model object library
in system simulation is described. Reference is made to
FIG. 3 for those steps needed to setup and execute a system
simulation. The setup steps are performed once. From then
on, system simulations are just executed unless new or
changed soft IP models need to be added to system simu-
lation in which case the setup steps shown in FIG. 3 need
to be repeated. Before the simulator is run, the first setup
step as shown in block 300 is to add soft IP models to PLI
startup tables. During model compilation the various module
and subsystem type names are output into the dynamic
library for each compiled soft IP subsystem. These names
must be defined in the simulator PLI startup tables so that
they are called during simulator initialization where they
register the action call backs that perform the simulation.
Every different HDL simulator uses slightly different startup
tables. For the Verilog HDL, the startup table and linking
requirements for a number of different simulators are
described in a book of S. Sutherland, “The Verilog PLI
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Handbook”, Kluwer Academic Publishers, Boston, 1999,
which is hereby incorporated by reference.

[0106] As shown in block 310, the next setup step requires
the setting of the operating system environment variables or
simulator options so that when the HDL simulator starts up,
the compiled soft IP model dynamic libraries can be located.
Next as shown in block 320, the simulator program is
started. As shown in block 330, the simulator reads and
elaborates all of the system HDL files. After elaboration, the
simulator soft IP libraries are loaded (linked with simulator
according to one of the methods described in the “Back-
ground of the Invention” section V above), see block 340.
Next, as shown in block 350, the simulator loads the support
libraries needed by the PLI model compiler. The main
purpose of the model compiler support library is to provide
interfaces to the system PLI constructs (HDL construct type
7 above) such as displaying output.

[0107] In FIG. 3 blocks 350 to 380, the simulator calls the
object code library routines produced by the PLI model
compiler simulation system of the present invention, i.e., the
simulator loads the PLI model compiler support, per block
350, the simulator calls the start call backs, per block 360,
the simulator runs the soft IP model initialization code, per
block 370, and the simulation executes, per block 380. These
steps are executed by the simulator by making PLI calls and
registering call backs resulting in soft IP model simulation.

[0108] FIG. 4 provides an overview block diagram of the
computer system 400 that may be used to implement the
simulation system and method described herein. As shown
computer system 400 generally comprise a computer pro-
gram residing in the memory 411 of a computer 409, ¢.g., a
computer having a central processing unit 413, that runs the
conversion program and simulator program of the present
invention. Computer system 400 preferably includes input
peripherals 414, e.g., disk drives, keyboards, etc., as well as
output peripherals 415, e.g., CRT, data storage devices, disk
drives, etc.

[0109] The simulation system of the present invention will
now be shown in more detail by describing the details of the
programming language code generation phase, i.e., FIG. 2,
block 260, for the current most popular Verilog HDL using
the popular C programming language. In general, the C code
is grouped into a number of code types. For example,
initialization C code that is run when system simulation
begins to register PLI change call back events, evaluation C
code to evaluate expressions and assignments, and sched-
uling C code to delay events by calling the PLI and inter-
acting with the simulator scheduling system.

[0110] Because all HDLs model hardware, C code gen-
eration for any other HDL is substantially the same. The
HDL analysis phase uses compiler construction methods
known in the art. The C code generation phase differs from
compiled HDL simulation systems, such as the one
described in U.S. Pat. No. 5,437,037 (which is hereby
incorporated by reference), because in the present invention
the PLI provides simulation services so that C language calls
to invoke PLI services simply generate PLI calls instead of
needing to implement simulation operations.

[0111] FIG. 5 shows the C code generation steps for
initial/always blocks. Verilog simulation begins by execut-
ing all initial and always blocks in parallel. Therefore, as
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shown in block 500, C code must be generated to call the C
function or functions that contain the C code that simulates
each initial and always block. In the preferred embodiment,
all initial/always block C code for a given Verilog module is
placed in one C function. Each initial/always block startup
call passes a label indicating which of the code sections in
the C function needs to be executed. The label is either used
to index a jump table or as a switch statement selector. Per
block 510, a return to simulator return statement is placed at
the end of each initial block. Per block 520, for always
blocks at the end of the C code that simulates the always
block’s procedural content, a goto statement back to the
beginning of the always block is emitted. Alternatively, each
always block implementing C code is enclosed in a forever
loop.

[0112] FIG. 6 shows C code generation steps for the
timing free procedural constructs. This is the easiest C code
to generate since it does not involve parallelism. Because
Verilog construct types were separated out (see FIG. 2 block
230 above), the control structure constructs (such as for
loops and wait loops) are located and corresponding C
language constructs such as for loops and goto statements
are written into the output C file per block 600. In the
preferred embodiment, C loops are used because optimizing
C compilers produces more efficient code. In an alternative
embodiment, all Verilog loops are decomposed into C goto
and if statements. Next, per block 610, C code to compute
all expressions and assignments in procedural code are
generated. C code generation is almost identical to normal
programming language compiler code generation except
expressions and assignments are more complex in Verilog
because Verilog has 4 values for each bit (0, 1, X, and Z) and
because Verilog vectors are allowed that are as wide as 1
million bits. Finally, per block 620, C code to invoke
functions and tasks is generated. Function and task input
arguments and return values must be pushed onto a call stack
before C code call is generated and popped at end of C code
to implement function or task calling and returning. Because
tasks can be suspended, instead of a direct call to invoke
task, C code to schedule a call back must be registered (set
up) and then the C statement to return to HDL simulator is
generated.

[0113] FIG. 7 shows C code generation steps for proce-
dural event controls. Procedural event controls in Verilog
stop execution of a particular parallel initial/always block
until the triggered event occurs. Per block 700, storage must
be allocated to record for every event control in every
instance whether or not an initial or always block is currently
suspended waiting for the event to occur. Per block 710, the
direction is provided to resume location after event control
is determined. A C label must be generated at that point
where procedural code for Verilog statement after event
control starts. Event control resume C code call back uses
the label to jump to after the event control resume C
statement during simulation. Per block 720, C code is
generated just before the event control statement C code to
set to true the storage allocated in block 700 for the given
event control. Next per block 730, code to return to the
simulator is generated. Per block 740, in simulation startup,
C function code to attach value change call backs to every
variable used in event control expression is generated. Per
block 750, at the start of the code after the event control,
code to evaluate the event control expression is generated.
There are actually two cases for block 750. For simple event
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control expressions called change operators, the call back
itself causes execution to continue after event control. For
complex event control expressions such as “wait (c1k=0 &&
clear=0)”, C code must be generated to evaluate expression
and if false, re-arm the event control and return to the
simulator instead of continuing execution as is always the
case in simple event controls.

[0114] FIG. 8 shows C code generation steps for proce-
dural delay controls. Procedural delay controls in Verilog
stop execution until time has elapsed. Per block 800, first the
location after delay is located to allow a label to be defined.
Then per blocks 810 and 820, C code to schedule a delay
reason call back and return to the simulator is generated.

[0115] FIG. 9 shows C code generation steps for declara-
tive gates. Per block 900 in simulation startup C code, calls
to register (attach) value change call backs to gate input are
generated. Per block 920, in a routine implementing all
declarative constructs in a module, a routine to implement
gate functionality is generated. It is called when any gate
input changes per block 900. The body of the gate evaluation
routine evaluates the gate and checks to see if a new value
is different. If the value changed and there is no delay,
vpi_put_value PLI routine is called to change the value of
gate output. If the gate has delay, per block 930, a delay
reason call back is registered and when the delay has
elapsed, the call back routine stores the value into the gate
output. The evaluation routine per block 910 uses the
vpi_get_value PLI routine to access the current value of
other inputs that did not change. The gate evaluation code is
a simple C expression evaluation code. For example, the
code to evaluate a 2 input “and” gate (assuming all values
have a and b parts as defined in Verilog LRM) in the
preferred algebraic formula evaluation method is:

/* case 1: neither input x/z */
if (tinlb & !in2b)

/* if either input O, value O else value 1 */
if (inla == O || in2a == 0) outa = 0; else outa = 1;
outb = 0;

/* case 2: if either input non x/z value 0, then output 0 else x */
else

{
if (((inla | in1b) == 0) || ((in2a | in2b) == 0)) outa = outb = 0;
else outa = outb = 1;

}

[0116] In an alternative embodiment, gate evaluation is
accomplished by table look up instead of through the
evaluation of logic equations.

[0117] The implicit operations, such as gates required by
“wired or” signal net connections and delay lines, have C
code generated during this phase. The implicit operations
were identified, per block 250 of FIG. 2, and saved. C code
is then generated during this declarative gate C code gen-
eration phase.

[0118] HDLs often contain user coded primitive gates
(called UDPs in Verilog) that are defined with user specified
tables. Here, in all embodiments, the generated C code
executes the one or more table look up operations defined by
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the standard for a given HDL. For Verilog HDL sequential
primitive UDPs, evaluation may require multiple table look
up operations.

[0119] In the preferred embodiment, there are a number of
optimizations that reduce the number of call backs and
returns back to the simulator. Since a number of gates may
need to have their output value stored at the same time, a list
of gates is kept and only one call back is registered in which
all gate output values are stored. During C code generation,
the need for a change call back is stored in the net list data
structure and whenever a new call back is needed a check is
made to see if there is already a call back generated. This
same optimization is used for grouping gate inputs changes
and event and delay controls changes and delay call backs as
well.

[0120] FIG. 10 shows the C code generation steps for
declarative path delays. Path delays work by delaying the
actual output change until the path delay has elapsed.
Because of the delayed change, per block 1000, extra C code
per instance storage must be allocated to store pending but
not yet changed path destination output value. Per block
1010, a change call back is added to path input (called path
source). As above, related changes are grouped into one call
back. Per block 1020, a change call back is also added to
path output. The change call back is used to intercept and
delay actual path output put value operation. Per block 1030,
the C code is generated for an input change call back routine.
The C code schedules the delay call back that is later used
to see if the output change call back routine time has
matured per block 1040 so that the value can be assigned to
path output port. In the preferred embodiment, if the change
needs to be delayed more after the logic value changes, the
same output change call back routine is called with different
user data flag.

[0121] The only remaining C code generation involves
developing the library of miscellaneous, system, and simu-
lator service operations that are invoked by the generated C
code in the various figures that were described in detail
above. C code to control user access and the visibility of
internal HDL variables is also generated during this phase.
In addition, the main HDL constructs that need support
library calls, e.g., system task and function constructs (item
7 in “Background of the Invention” section III above), have
support library calls generated. Miscellaneous HDL func-
tions are such tasks as starting and stopping simulation,
writing results to output, monitoring and strobing net
changes and debugging and viewing signal waveforms. For
each such function defined in the HDL, one or all of the
following three listed methods is used: (1) use a built-in
predefined PLI function corresponding to a given miscella-
neous function to implement the given task; (2) generate
additional HDL source that only contains system tasks and
functions. The generated object code file then contains PLI
operations to execute the given source statement; or (3)
provide a library that mimics (simulates using object file
code) miscellaneous functions for a given HDL.

[0122] An additional HDL generation step may be added
to FIG. 2, which is not strictly required by the simulation
system and method of the present invention, but is useful in
making system HDL source files that are easier to use with
other Verilog tools and easier to understand. The additional
step is to generate HDL (not C) source files defining input
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port order, size, and type for all modules in the converted
soft IP model. Other HDL processing tools can then analyze
the system model.

[0123] The present invention may be embodied in other
specific forms without departing from the spirit of the
essential attributes thereof; therefore, the illustrated embodi-
ments should be considered in all respects as illustrative and
not restrictive, reference being made to the appended claims
rather than to the foregoing description to indicate the scope
of the invention.

What is claimed:

1. A system for simulating an electronic circuit model that
has been coded into a hardware description language (HDL),
comprising:

a processor having memory for storing a program that is
capable of being executed by said processor said pro-
gram directing the operation of said processor to:

convert the HDL coded electronic circuit model to binary
object code; and

simulate the electronic circuit by utilizing said binary

object code.

2. The system of claim 1, wherein said program directs
said processor to convert the HDL coded electronic circuit
model to binary object code by directing said processor to
translate the HDL coded electronic circuit model into an
intermediate program language code and to compile said
intermediate program language code to said binary object
code.

3. The system of claim 2, wherein said intermediate
program language code is a C program language code.

4. The system of claim 3, wherein said C program
language code is grouped into code types selected from a
group consisting of: evaluation C code and scheduling C
code.

5. The system of claim 1, wherein said binary object code
performs operations that are selected from a group consist-
ing of: initial/always block operations, timing-free proce-
dural operations, task procedural operations, function pro-
cedural operations, event control operations, delay control
operations, scheduled procedural operations, declarative
gate operations, continuous assignment operations, user-
defined primitive operations, implicit wired operations,
delay path operations, system task operations, and system
service operations.

6. The system of claim 1, wherein said program directs
said processor to simulate the electronic circuit by utilizing
said object code to make calls to a programming language
interface (PLI).

7. The system of claim 1, wherein said binary object code
is utilizable by substantially all types of simulators.

8. Amethod for simulating an electronic circuit model that
has been coded into a hardware description language (HDL),
comprising:

reading the HDL coded electronic circuit model;

converting the HDL coded electronic circuit model into a
linkable simulation program; and

simulating the operation of the electronic circuit by uti-
lizing said linkable simulation program.

9. The method of claim 8, wherein said step of converting

comprises the steps of translating the HDL coded electronic
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circuit model into an intermediate program language code
and compiling the intermediate program language code to
said linkable simulation program.

10. The method of claim 9, wherein said intermediate
program language code is a C program language code.

11. The method of claim 10, wherein said step of con-
verting further comprises the step of group said C program
language code into types selected from a group consisting
of: evaluation C code and scheduling C code.

12. The method of claim 8, wherein said linkable simu-
lation program performs operations that are selected from a
group consisting of: initial/always block operations, timing-
free procedural operations, task procedural operations, func-
tion procedural operations, event control operations, delay
control operations, scheduled procedural operations,
declarative gate operations, continuous assignment opera-
tions, user-defined primitive operations, implicit wired
operations, delay path operations, system task operations,
and system service operations.

13. The method of claim 8, wherein said step of simulat-
ing comprises making calls to a programming language
interface (PLI).

14. The method of claim 8, wherein said linkable simu-
lation program is utilizable by substantially all types of
simulators.

15. A system for simulating an electronic circuit model
that has been coded into a hardware description language
(HDL), comprising:

processing means for executing a program, wherein said
program includes a conversion means for converting
the HDL coded electronic circuit model into a simula-
tor-operable program and a simulation means for simu-
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lating the HDL coded circuit model by utilizing said
simulator-operable program to make calls to a pro-
gramming language interface (PLI).

16. The system of clam 15, wherein said simulator-
operable program comprises binary object code.

17. The system of claim 15, wherein said conversion
means includes means for translating the HDL coded elec-
tronic circuit model into an intermediate program language
code and means for compiling said intermediate program
language code to said simulator-operable program.

18. The system of claim 17, wherein said intermediate
program language code is a C program language code.

19. The system of claim 18, wherein said C program
language code is grouped into code types selected from a
group consisting of: evaluation C code and scheduling C
code.

20. The system of claim 15, wherein said simulator-
operable program performs operations that are selected from
a group consisting of: initial/always block operations, tim-
ing-free procedural operations, task procedural operations,
function procedural operations, event control operations,
delay control operations, scheduled procedural operations,
declarative gate operations, continuous assignment opera-
tions, user-defined primitive operations, implicit wired
operations, delay path operations, system task operations,
and system service operations.

21. The system of claim 15, wherein said simulator-
operable program is utilizable by substantially all types of
simulators.



	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

