
Against Three Formalist Computer Program Verification Methodologies

(Extended Abstract)

Steven Meyer
Pragmatic C Software Corp., Boston, MA, USA

smeyer@tdl.com

Abstract

Three formalist computer program verification research methodologies are criticized
using the philosophy of science developed by Lakatos, Feyerabend and Kuhn. The
research programmes are 1) Dijkstra and Hoare verification by formal proofs, 2) De
Millo, Lipton and Perlis verification by social processes within the computer science
community, and 3) Fezter’s philosophical disproof of the very idea of program
verification using a semiotic-deductivist philosophical theory. This paper uses
philosophy of science to study philosophy of computing instead of the too often
unsuccessful method of using methods from strong AI and algorithm study to attempt to
solve general philosophical problems. It is argued that further scientific progress in CS
needs abandonment of current formalist phenomenological baggage. The paper
concludes with an example from the physics of laminar flows that illustrates Feyerabend’s
problem specific and anti-formalist characterization of computational science.



- 2 -

Against Three Formalist Computer Program Verification Methodologies

Extended Abstract

1. Intr oduction

In the past, philosophy of computer science (CS) has too often meant applying methods
from the strongest forms of AI and formalist algorithm study to solve philosophical
problems. Butafter half a century of using this approach, there has been little scientific
progress in CS and no contribution to classical philosophy. Most predictions from strong
AI have not come true and little (or no) progress has been made on the P=NP problem
that is the central CS theoretical problem. This paper uses philosophy of science to study
three theories on the nature of the verification of computer programs. The original idea to
study program verification as a road toward understanding the foundational and
philosophical problems of CS was motivated by the observation that algorithm study and
the P=NP problem are related to the philosophy of mathematical truth. This paper argues
that further progress is CS requires giving up the formalist phenomenological baggage
embodied by the three theories of program verification criticized here.1

Since Karl Popper and his students developed falsificationism and the improved Lakatos-
Feyerabend-Kuhn (LFK) methodology of scientific research programmes (MSRP),
science has been demarcated from pseudo-science and metaphysics because scientific
theories make objective testable claims. An intellectually honest scientist must be willing
to abandon a theory if it is falsified. TheLFK theory improves naive falsification to allow
both refutation and proof. Lakatos has shown that mathematical theories are also testable
in this same sense.2

It is unimportant whether CS is similar to mathematics or to science because either theory
must be testable if it has any claim to intellectual respectability. CS is not the only
science that involves both empirical questions and mathematics.The development of
physics has been as much a story of testing the correctness of computation outside the
world of mathematical axiomatic conventionalism as CS (Smolin[2006], 278-282).
Physics uses experiments to criticize mathematics that produces physically impossible
infinities while CS uses experiments on computability to test theories of computation.

The author presented a general argument against formalist CS at ECAP 2005 using
philosophical arguments from scientific natural philosophy (Meyer[2005]); This paper
continues development of an anti-formalist research programme by criticizing three

1. Phenomenology as used here follows Pickering’s definition as discourse pre-determined by assump-
tions about the nature of mathematics. According to Pickering[1984], 26-27, one needs a theory of
science before cloud chambers (here program verifications) can be interpreted.Following LFK phi-
losophy of science, progress requires avoidance of such assumptions.

2. See Popper[1959] for the original definition of falsification and see Lakatos[1978], 8-101 for its fur-
ther development as MSRP. Lakatos[1978b], 24-42 develops the idea of quasi-empirical methodology
of mathematical research programmes. See Meyer[2002] for further description of the contributions
to concrete example based philosophy of science by Lakatos, Feyerabend and Kuhn. Meyer[2008]
discusses the concepts of quasi-empiricism and phenomenology as used in this paper.

- 2 -



- 3 -

current computer program verification methodologies.The Dijkstra (Dijkstra[1976]) and
Hoare (Hoare[1986]) research programme advocates verification by formal mathematical
proof. TheDemillo, Lipton and Perlis research programme (DeMillo[1979]) advocates
verifying program correctness by the psychology of social processes (irrational group
consensus). TheFetzer impossibility of computer program verification research
programme (Fetzer[1988, 2001]) attempts to show program verification is impossible
using a philosophical theory. It uses the distinction between computer programs and
algorithms and assumes the philosophical theory that science works by using inductive
discovery and deductive verification (in Fetzer’s words from the very nature of causal
systems).3 Tw o of the theories criticized below advocate program verification and one
opposes it. The methodological answer follows the LFK development of disproof and
Feyerabend’s defense of rationality (Feyerabend[1976]). Namely, there is no generally
applicable method for programming, but using the ’cunning of reason’, a method can be
rationally chosen for any specific problem. Also see the discussion of Feyerabend’s
method in Smolin[2006] (292-299). The discussion below of Heisenberg’s analysis of
laminar flow illustrates the problem specific method.

2. Three Verification Methodologies

Due to lack of space in an extended abstract, the three arguments are only sketched here.
The talk will provide the detailed arguments.

2.1 Dijkstra’ s book that created program verification is incorrect

Professor Dijkstra wrote the bookA Discipline of Programming (Dijkstra[1976]) to
define and explain mathematically certain computer programme verification by proof
using syntactic structures that Dijkstra claimed simplify the proofs. Dijkstra attempted to
apply formal refinement to probably the easiest of all non trivial CS problems.The
problem is called the Dutch Nation Flag Problem (Ibid., 111-116). Itsorts tertiary values
(3 colored balls) into 3 separate regions under some constraints.Dijkstra’s formally
verified algorithm is both incorrect (although it can be made correct at the cost of
efficiency if a non standard English parsing of Dijkstra’s prose is used) (Meyer[1983], 6,
11).

There can be no stronger refutation than an experimental dis-confirmation in the book
that defines the research programme. The key to efficient algorithms and simple
programs that are easy to debug (debugging is a kind of scientific experimentation) is to
use a scientific duality. The problem can be viewed as as a two pass binary sort of only
two colors in each pass, or as a linear scan that processes all 3 colors at once and
distributes three balls to the correct buckets. Sincesuch duality is not possible with
axiomatic formal mathematics, Dijkstra’s explication failed.

2.2 DeMillo et. al. verification as irrational group consensus

De Millo, Lipton and Perlis (DeMillo[1970]) criticize formal program verification
because it does not match their perception of how social interactions between

3. Fetzer bases his beliefs on the concept of semiotic systems that he attributes to Charles S. Pierce and
Newell and Simon (Fetzer[2001], 43-44, 48-52).

- 3 -



- 4 -

mathematicians occur when theorems are proven. Their research programme is
immediately pseudo science because there is no objective way to test it. They offer no
criteria that would allow the correctness of a verification to be determined when two
different communities disagree. Presumably they are assuming only one group exists in
which decisions are based on academic hierarchy.

The computer program verification using social processes research programme is so
disconnected from reality and so based on creating a closed elitist society that it is
nothing more than metaphysics. SeeYandell[2002] for a detailed discussion of how
mathematicians really interact. The description is the result of Yandell’s extensive
interviews with prize winning mathematicians.Mackenzie[2004] documents efforts by
the CS establishment to prevent the publication of Fetzer’s criticizing paper.
Meyer[1983], Chapter 3 discusses Dijkstra and De Millo et. al.prevention of publishing
any scientific criticism of program verification.

2.3 Fetzer’s criticism requires philosophically questionable assumptions

Fetzer (Fetzer[1988, 2001]) argues that program verification is impossible, but instead of
using scientific testing of verification. hedefends formalist CS by using untestable
philosophical assumptions. All Fetzer shows is that verification is not possible in his
philosophical world. Fetzer ignores incompleteness results from logic and ignores
disagreements among mathematicians over acceptable methods of formal deduction and
induction (for example Goedel[1986], Finsler[1996] and Bregner[1995]). Formal
philosophy applied to concrete experimental problems (does a program work, it it
efficient, does it have bugs?) is immediately refuted because its domain of application
comes from our physical world. Fetzer’s assumption actually defend formalist
programme verification by continuing to carry the baggage of pre-determined semiotic-
deductivist foundations of mathematical logic (Fetzer[2001], 280-284).

Fetzer also assumes that science (and therefore CS) follows the inductive-deductive
model of science ([Fetzer[1988], 1051-1052) that has been disproven by Lakatos
(Lakatos[1978b], 128-192).Finally, Fetzer (p. 1058) makes the mathematical assumption
that there is a difference between an algorithm and the program that expresses it.Fetzer’s
criticism is therefore incorrect because it ignores problem specific knowledge.

3. Heisenberg Problem Specific Example

The physical testing of a hydro-dynamic calculation and the correctness of the related
computer simulation from the first half of the 20th century remain open although the
physics has been well understood since the 1920s.Heisenberg starts the discussion from
his AHQP (Sources for the History of Quantum Physics) (Kuhn-AHQP[1962]) with ’I
learned more from Bohr than anybody else the new type of theoretical physics which is
almost more experimental than mathematics. That is you have to cover the experimental
situation by means of concepts which fit.’

In 1922 Heisenberg wrote a paper on the instability of laminar flow (small oscillations
around laminar flows). A year later mathematician Fritz Noether applied a general
mathematical theory to show the flow was stable. The proof looked good to everyone
including Heisenberg, but Heisenberg believed from his physical intuition that he was

- 4 -



- 5 -

correct.

In 1950, a pupil of Von Neumann performed a digital computer simulation that produced
results close to Heisenberg’s. This example shows that formalism can not replace
science. Also,Heisenberg’s result may still turn out to be wrong.

4. Conclusion
This criticism of the current theories of computer program verification shows the
bleakness of engineering style formalism and the need to establish literature and science
area computer science departments.4 Unless CS is separated from information technology
and business, the most important computational questions of our era will never even be
asked. It is time to return to Thomas Kuhn’s 1960 historical analysis: ’historically,
science and technology have been relatively independent enterprises, going back as far as
classical Greece and Imperial Rome!’ (Mirowski[2005]).

5. References
Bregner[1995] Breger, H. (Gillies, D. Ed.).Revolutions in Mathematics.Oxford,

1995, 249-264.
DeMillo[1979] De Millo, R. A., Lipton, R. J., and Perlis, A. J. Social processes

and proofs of theorems and programs.CACM. 22, 5(1979),
271-280.

Dijkstra[1976] Dijkstra,E. W. A Discipline of Programming. Prentice Hall, 1976.
Fetzer[1988] Fetzer, J. H. Program verification: the very idea.CACM. 31,

9(1988), 1048-1063.
Fetzer[2001] Fetzer, J. H. Computers and Cognition: Why Minds are not

Machines.Kluwer Academic, 2001.
Feyerabend[1975] Feyerabend, P.Against Method(London 1975).
Finsler[1996] Finsler, P. (Booth, D. and Ziegler, R. eds.) Finsler set theory:

Platonism and Circularity.Birkhauser, 1996.
Goedel[1986] Goedel,K. (Feferman, S. ed.)Collected Works of Kurt Goedel.

vol. I, Oxford, 1986.
Hoare[1986] Hoare,C. A. R. Mathematics of programming.Byte. (August

1986), 115-149.
Kuhn-AHQP[1962] Kuhn, T. (Interviewer). Transcript of the AHQP (Sources for the

History of Quantum Physics) interview of Werner Heisenberg by
Thomas Kuhn, Film A 603.2 (2), 11-32.

Lakatos[1978] Lakatos,I. Philosophical papers. Vol. 1. The Methodology of
Scientific Research Pro grammes,Ed. J. Worrall and G. Currie
(Cambridge 1978).

Lakatos[1978b] Lakatos,I. Philosophical papers. Vol. 2.Mathematics, Science

4. Smolin describes a similar lack of scientific progress in theoretical physics that Smolin attributes to
academic organization (Smolin[2001], chap. 19).

- 5 -



- 6 -

and epistemology, Ed. J. Worrall and G. Currie (Cambridge 1978).
MacKenzie[2004] MacKenzie, D.Mechanizing Proof - Computing, Risk, and Trust.

MIT Press, 2001, 197-281.
Meyer[1983] Meyer, S. Pragmatic Versus Structured Computer Programming.,

Unpublished (URL www.tdl.com/~smeyer/docs/StructProgBook-
IntendedThesis.pdf), 1983.

Meyer[2004] Meyer, S. "Proposal to teach Lakatos-Feyerabend-Kuhn
Philosophy of Science", unpublished, 2004, URL:
www.tdl.com/~smeyer/docs/lfk-essay.dec22.pdf.

Meyer[2005] Meyer, S. "To ward Anti-Formalist Computer Science", ECAP’05
Abstracts, Computing and Philosophy, p. 27 (Extended abstract
and presentation slides available at URL
www.tdl.com/~smeyer/docs/antiformalist-cs.foils.pdf).

Meyer[2008] Meyer, S. "Modern Mathematics and Physics are Quasi-empirical
in the Same Sense", URL: www.tdl.com/~smeyer/docs/quasi-
empirical-math.pdf, 2008.

Mirowski[2005] Mirowski, P. Hoedown in the OK corral: more reflections on the
’social’ in current philosophy of science. Stud. Hist. Phil. Sci. 36
(2005),791-799.

Pickering[1984] Pickering, A. Constructing Quarks.University of Chicago Press,
1984.

Smolin[2006] Smolin,L. The Trouble with Physics - The Rise of String Theory,
the Fall of a Science, and What Comes Next. Houghton Mifflin,
2006.

Popper[1959] Popper, K. Logic of Scientific Discovery (New York 1959), section
12.

Yandell[2002] Yandell, B. The Honors Class - Hilbert’s Problems and Their
Solvers.A K Peters, 2002.

- 6 -


