Adding Methodological Testing to Naur’s
Anti-formalism

1 Introduction

In late 2011 Turing Award winner Peter Naur published an extremely interesting book [23]
in the form of an interview. The book strongly criticizes formalist computer science. Naur’s
characterization of computational thinking is superior to previous criticisms because he un-
derstands that computer science has become ”cognitive information processing”. Naur states
"mental life during the twentieth century has become entirely misguided into an ideological
position such that only discussions that adopt the computer inspired form” are accepted [22]
p. 87]. This formalist conception of the nature of human cognition now dominates not just
theoretical computing, but also computer program development, social sciences, philosophy of
science and is even currently advocated as a replacement for physics [Il p.1].

The book Conversations - Pluralism in Software Engineering is particularly valuable because
Naur provides background knowledge and explains the evolution of his current thinking. In
addition, the interviews make Naur’s publications more easily accessible by giving URL’s for
some of his more recent works and by providing detailed references for his earlier works during
his amazing 60 year career as a leading founder of computing.

My goal in this paper is to supplement Naur’s criticism by describing a different philosoph-
ical tradition that adds methodological testing to Naur’s critical philosophy. Naur’s criticism
of AI and the mechanical cognitive metaphor is unrivaled, but in my view Naur does not pro-
vide any prescriptive guidance to scientists and philosophers for choosing between alternative
methodologies and does not provide assistance so that scientists can test research programmes.

After summarizing Naur’s criticism, I discuss a related philosophical tradition that when
added to Naur’s, allows methodological testing of computer dataology and scientific methods
and theories. The tradition is called “the methodology of scientific research programmes”
(MSRP) [14] and was developed by philosopher Imre Lakatos as an antidote to computer in-
spired forms of thought. MSRP is the culmination of anti-formalism through the study of
method started by the founders of modern physics and continued by the Vienna Circle. Next,
four different criticisms of structured programming are discussed including my 1970s criticism
that explicitly attempted to apply MSRP. The remainder of the paper discusses anomalies
and problems that need to be studied with this new methodology in a post computer inspired
methods world.

2 Naur’s Criticism of Mechanical Cognitive Information
Processing

Naur recognizes the importance of programmer specific problem solving. In [23, p. 30] the
interviewer asks “...you basically say that there are no foundations, there is no such thing as
computer science, and we must not formalize for the sake of formalization alone.” Naur answers,
“I am not sure I see it this way. I see these techniques as tools which are applicable in some
cases, but which definitely are not basic in any sense.” In criticizing structured programming,
Naur states: (p. 44) “The programmer has to realize what these alternatives are and then
choose the one that suits his understanding best. This has nothing to do with formal proofs.”



Naur’s Anti-formalism

Naur understands the importance of terminology and criticizes computer science’s attempt
to justify a theory by giving it a persuasive name. Naur believes that calling computing “com-
puter science” is misguided and suffers from the fallacy of proof by naming [21, p. 208]. Naur
invented the better term dataology that I use in this paper [22] p. 86].

Naur states [23, p. 67] that “program development is about building up a certain under-
standing, a theory, its not about creating program text.” Naur explains that there are no formal
principles for the building and uses this building a theory metaphor in his dataology method-
ology also. Naur relates that program development can be viewed as programmers injecting
their knowledge into programs (p. 50). The theory building metaphor is accompanied by Naur’s
superior cases studies and constructed models in dataology and in science [20] p. 270].

3 Discussion of Naur’s Philosophy

Naur advocates that science and philosophy should be based on descriptions. In his paper
“Computing as science”, Naur lists eight aspects of various fields of learning [21], pp. 208-210].
For example, the eighth circumstance is “the influence from computers on how human mental
activity is described. During the last 40 years many psychologists seem to talk about human
beings as information processors as a matter of course” (p. 210). Naur’s solution is a philosophy
of descriptions that are internally coherent (p. 212).

In my view, some minor problems with Naur’s philosophy are that it is to narrow and too
much based on what Wittgenstein called pointing and does not deal with theoretical content. In
addition, I think Naur’s historical analysis is not quite correct. Problems arise when Naur’s phi-
losophy is applied to scientific practice because methods and theories are not testable. There is
no rational method for deciding between alternatives: between alternative data representations,
different program verification methods and different theories or research programmes.

I do not believe as Naur claims that Karl Popper’s logic of scientific discovery was an
important part of scientific practice. Naur’s statement that “since the middle of the 20th
Century, the discussion of what science is has been dominated by Popper’s notion” [2I], p. 211]
is wrong [4] [3].

The actual history is that around 1900, the founders of modern physics realized that science
needed objective ways of testing competing theories because the stable Newtonian universe
was breaking down. Particularly Max Planck and Albert Einstein realized that objective ways
to compare competing theories that often had almost nothing in common were needed. The
beginning of quantum physics connects to dataology because Planck’s black body radiation
calculation depended on the fact that there is only a countable number of the separate non-
interacting oscillators [2, p. 15]. Their students and colleagues then in the 1920s and 1930s
formed the Vienna Circle which criticized metaphysics and attempted to provide rational ways
of testing competing theories. Karl Popper was not part of the Vienna Circle. After WWII
Popper was ideologically popular, though. Popper’s conception of falsifiability was not accepted
by the Vienna Circle in the 1930s and was not popular among scientists in the 1950s before
Lakatos. Scientists viewed falsification as too simple. Although, sometimes simple falsification
provides assistance to scientists. In the 1930s, Vienna Circle founder Otto Neurath criticized
Popper’s falsificationism [24] in a letter dated 4.2.1936 to Karl Popper by stating “Einstein
and Planck believed in schools.” (modern term for “school” is “research programme”). Also,
Naur does not use the term “logic” in the sense it is used by scientists and philosophers. The
philosophical as opposed to mathematical meaning of the term “logic” follows the traditional
intuitive sense of “consistent internal relationships” that goes back to Greek philosophers.

During the late 19th and 20th century, mathematics split into pure and applied parts [21],



Naur’s Anti-formalism

p. 209]. This splitting was opposed by both classical mathematicians such as Hilbert and physi-
cists but occurred anyway. The main change was elimination of any connection of mathematical
entities from physical reality and replacing mathematics with the study of abstract structural
properties. See [5] for a detailed history of this change.

Also, I think Naur’s characterization of science as: “Every science is a matter of description”
[23, p. 85] actually is the same philosophical theory as the later Ludwig von Wittgenstein’s
philosophy of mathematics [30]. The idea of mathematics as “describing” was Wittgenstein’s
response to the the split into pure and applied mathematics and the acceptance of structure
abstracting formal set theory. I think Wittgenstein would have called Naur’s describing as
pointing. Paul Feyerabend gave his impression of Wittgenstein in 1952 by writing: Wittgenstein
emphasized “the need for concrete research and his objections [were] to abstract reasoning
(‘Look don’t think!”)” [9l p. 115].

I think philosopher of mathematics Juliet Floyd would characterize Naur’s philosophy as
similar to Feyerabend’s, Kuhn’s and Popper’s. She writes:

Feyerabend, like Popper, missed the boat. They each missed the multifariousness of
the ways in which modern formal logic would serve as a new lens for philosophy,
illuminating and distorting its questions in new kind of ways [12], p. 111].

I would use the term “quasi-empirical scientific testing of methods” for “philosophy” above,
but otherwise agree. See my 2011 TACAP paper that discusses logical truth from Lakatos’
quasi-empirical research programme perspective [19].

4 Lakatosian Methodology of Research Programmes (MSRP)

Feyerabend describes MSRP in this way:

He [Lakatos] admits that existing methodologies clash with scientific practice, but
he believes that there are standards which are liberal enough to permit science and
yet substantial enough to let reason survive. The standards apply to research pro-
grammes, not to individual theories; they judge the evolution of a programme over
a period of time, not its shape at a particular time; and they judge this evolution in
comparison with the evolution of rivals, not by itself [16, p. 116].

The missing part of Naur’s characterization of computing and science is that it is irrational
because it allows acceptance of whatever the current dominant academic clique believes and fa-
cilitates elimination of all competing theories. This is exactly the situation that occurred during
the 1970s as computer science became mechanical cognitive information processing (AI). The
dominance of Al and object oriented formal program verification happened as Naur has docu-
mented without any debate let alone any scientific testing of competing research programmes.
Basically, current computing became what is it because of mob rule by influential and well
funded academics [22], p. 87]. The remainder of this paper adds research programme testing to
Naur’s characterization of dataology and science.

5 Methodological Advantages of my Falsification of Struc-
tured Programming

The importance of adding methodology testing to Naur’s philosophy can be seen by considering
the history of the disproof of formal program verification. I used the MSRP theory to falsify

3



Naur’s Anti-formalism

structured programing but my MSRP based disproof was ignored so that it took at least 30
more years for skepticism to prevail.

There are four different research programmes criticizing structured programming. By struc-
tured programming here I mean not just Naur’s “idea’s of so called structured programming”
and “claims for so called formal specifications of programs” [22 p. 86] but also belief in the
supremacy of mathematical logic and set theory. This belief in absolute formalism convinced
adherents that it was only a matter of time before artificial intelligence surpassed human in-
telligence and before all mathematics was mechanized. Structured programming was the first
human involved step of this inevitable formalization of everything.

The four criticisms are:

1. My MSRP based criticism falsified structured programming by showing that a defining
example by Edgser Dijkstra failed. The algorithm is inefficient in spite of Dijkstra claim.
Dijkstra saved correctness by finding an alternative English language parsing of the text
describing the refinement [I8], pp. 4-9,11]. My criticism used methodological testing from
MSRP to falsify the hard core of structured programming by disproving a defining instance
of the research programme because examples claiming to define a theory must be its hard
core.

2. Naur’s “programming as a human activity” with the hard core of programming as devel-
opment of “a certain kind of [human] understanding” [22] p. 86].

3. [6] argues program verification must fail because mathematical proofs are accepted from
social processes, and no comparable social processes can take place among program ver-
ifiers (p. 271). As Feyerabend would put it “no mob can be found to rule” [I6, p. 117].
I view the [0] argument as a Naur style case of “ideological suppression of scientific dis-
cussions” [22, p. 87] because the [6] authors were referees of my structured programming
paper (situation is documented in [I8] especially p. 23]) but did not reference my pa-
per. The ideology comes from [6] defending mathematical formalism against my MSRP
research programme testing criticism by jettisoning program proving in order to save
formalism.

4. Fetzer’s criticism claims that algorithms can be proven because they are axiomaticized
formal structures but programs are “causal models” that can not be proven [8, p. 1048].
Fetzer’s criticism requires accepting certain properties of formal structures.

I claim my criticism is the best of the four because it is objective and defends rationality using
MSRP for its falsification. It scientifically and objectively falsified structured programming.
Naur’s criticism depends on human psychology (I think he would claim this is a positive) so
it can not be tested and there is no progress since the “laboratory behavior” of one person
compared to another is hard to test. [6] criticism is irrational because it basically calls for mob
rule (social processes). [8] criticism depends on questionable beliefs about formal systems. For
example, using Fetzer’s argument, proofs in temporal logic are invalid but proofs in ZF set
theory are valid because in temporal logic events in time are followed by events at a later time
(this is usually what is meant by “caused”).

6 Toward Dataology Academic Study of Computing
Naur’s recent conversations book along with his 2007 Turing award lecture have made huge

strides in allowing study of computing in a scientific way. I think it now makes sense to think
about how academic dataology departments should be organized and what they should study.

4



Naur’s Anti-formalism

6.1 Ideological Suppression Issue Must be Solved

Before dataology academic departments can be established, scientific independence must be es-
tablished. As Naur puts it: “Other issues of science and scholarship imposed themselves upon
my attention in the form of ideological suppression of scientific discussions of computing and
human thinking.” [22] pp. 87-88]. Actually, the issues that Naur discusses have happened in
the US previously. See Thorstein Veblen’s late 19th century expose of the economic reasons for
ideological suppression in US universities in his book The Higher Learning in America, Veblen
writes “The need of university prestige ... pushes the members of the staff into a routine of po-
lite dissipation, ceremonial display, exhibitions of quasi-scholarly proficiency and propagandist
intrigue” [29, p. 124].

I can add additional suppression experiences that are more organizational than Naur’s. 1
attended the UC Berkeley computer science department after receiving a BS. degree from Stan-
ford in physical science (individually designed major). I attended the Berkeley computer science
department that was an independent department connected with physics because computing
began as numerical analysis. I looked for a computer science department because of advice
from William Shockley to avoid going to graduate school in an engineering department from
his experiences. I knew Shockley from attending his Freshman seminar. I shared an office with
Diane Mclntyre who had also studied at Stanford. Both of us were educated in an environ-
ment that encouraged study of concrete problems because of George Polya. Naur quotes Polya:
“start with concrete examples and then get the knack of it” [23] p. 92]. In my case, I was even
encourages at Stanford to avoid learning logic and set theory.

Both of us were thriving from the Polya influence and were allowed to study what we wanted
until the CS department was taken over by the EE department and all assistant professors were
fired. I had passed my orals with adviser Jay Earley and also James H. Morris. I ran into
ideological suppression when I became convinced that automatic programming couldn’t work,
and since I had been attending Feyerabend’s seminar decided to try to somehow show that my
belief was right. That is the reason for my MSRP falsification of Dijkstra’s Dutch National Flag
problem analysis (really sorting with only 3 values) [7]. The ideological suppression followed a
letter from Dijkstra that caused the then EE tenured faculty to prevent refereeing of my paper.
The long story is documented in [I8] pp. 4-21]. T ended up being right, but it took almost 40
years.

Another ideological suppression issue involves sociology. Sociologists seem to be the strongest
supports of the humans as information processors research programme. For example, the 2001
book Mechanizing Proof by Donald MacKenzie [I7] totally mis-represents Naur’s views. Al-
though the book was published in 2001, Naur is given only two paragraphs on his programming
methods. Mackensie writes: “He was a central member of the influential group of ‘mathemati-
cizers’ within computer science, but the mathematics he sought to apply was ordinary informal
mathematics.” (p. 49) This seems a rather strong understatement of Naur’s criticizing to me.
McKensie does write: “Naur, indeed, was later to become an explicit critic of excessive formal-
ism.” (p.49). Where is the individual choice mention? Also, McKensie’s book barely discusses
the Unix operating system that is very widely used in areas involving risk and trust (p. 98)
and does not mention the most widely used Linux system and Linus Torvalds who developed a
personal program development method.

6.2 Two Organizational Proposals

First, there needs to be independent dataology departments that will be able to allow multiple
competing research programmes to coexist. This has not been possible after computer science



Naur’s Anti-formalism

departments were moved into engineering schools and EE departments. Engineering is aimed
building and improving repeatable processes.

Second, there needs to be a journal like the old Communications of the Association of
Computing Machinery (CACM) that quickly publishes shorter results and algorithms with
minimal review for relevance. Currently, CACM is a popular journal not intended for scientists.
The change to many specialized journals starting in the mid 1970s was a mistake because it
strengthened an ideological based excluding review process. Another possibility would be to
have a journal similar to the Physics Review Letters.

6.3 Study Areas for Human Centric Dataology

There are a number of areas that once normal scientific study is restored could be studied in
dataology departments.

1. Reconnect with 19th century efforts to access infinity.
Mathematics seems unable to study issues involving infinity that do not involve current
standardized axioms and set theory. Under Naur’s method, the difference between po-
tential and actual infinity could be studied as competing research programmes. An area
of study similar to Naur’s universal Turing machine analysis might be studying the dif-
ference between the 1859 Dedekind cut definition of real numbers [I3 pp. 8-17] and the
later Cantor definition that requires an equivalence class algorithm (pp. 19-21).

2. Research program competition among different groups of axioms.

Swiss mathematician Paul Finsler, who studied at Goettingen during the Hilbert era,
argued that axiom selection was not just conventionalism, but should be tested. Compare
Finsler’s argument that the independence of the continuum hypothesis is an objective
true/false question similar to the independence of the parallel line axiom in geometry [10]
with Dana Scott’s proof of the independence of the continuum hypothesis [27]. See also
[11]. Along the same lines, it seems to me that Risch’s closed form indefinite integration
algorithm [26] is somehow wrong because it omits too much human mental life. Smolin’s
discussion of problems with the mathematics of physical fields in high energy physics
illustrates the limitations. [28].

3. Compare Penrose physicist’s description of memory with Naur’s synapse model.
The way physicists think is different from dataologist thinking. Roger Penrose’s disproof
of Al by positing quantum microtubule memory [25 pp. 366-367] should be compared
with Naur’s Synapse State model (research programme) [23], pp. 94-116].

4. Concrete complexity algorithms discovery from efficiency proof analysis.
Currently, algorithms in the concrete computational complexity area are discovered by
analyzing the combinatorial efficiency proof using standard assumptions and counting
conventions. This seems to me to need testing since it leaves out Naur’s human individu-
ality problem solving. Possibly new research programmes with different rules for counting
steps need to be discovered so there can be competition with current methods. Lakatos, in
his book Proofs and Refutations identified problems with discovery through proof analysis
[15, pp. 52-56,142].

References

[1] Scott Aaronson. NP-complete problems and physical reality. SIGACT News, 36, 2005. www.
scottaaronson.com/papers/npcomplete.pdf|of Mar. 2013.


www.scottaaronson.com/papers/npcomplete.pdf
www.scottaaronson.com/papers/npcomplete.pdf

Naur’s Anti-formalism

[13]
[14]

(15]
[16]

[17]
18]

(19]
[20]
(21]

22]
23]

[24]
[25]
[26]
[27]

28]

David Bohm. Quantum Theory. Dover, New York, 1951.

David Bohm. On certain epistemological and cosmological problems raised in Dr. Feyerabend’s
review of Causality and Chance in Modern Physics. Popper Archive, Stanford Hoover Institution,
Box 278, file 2, Palo Alto, California, 1959.

David Bohm. On the relationship between methodology in scientific research and the content of
scientific knowledge. The British Journal for the Philosophy of Science, 12(46):103-116, 1961.

Bruce Chandler and Wilhelm Magnus. The History of Combinatorial Group Theory: a Case Study
in the History of Ideas. Springer Verlag, New York, 1982.

Richard DeMillo, Richard Lipton, and Alan Perlis. Social processes and proofs of theorems and
programs. Communication of the ACM, 22(5):271-280, 1979.

Edsger Dijkstra. A Discipline of Programming. Prentice, New York, 1976.

James Fetzer. Program verification: the very idea. Communication of the ACM, 31(9):1048-1063,
1988.

Paul Feyerabend. Science in a Free Society. NLB Press, London, 1978.
Paul Finsler. Uber die unabhéngigkeit der continuumshypothese. Dialectica, 23(1):67-78, 1969.

Paul Finsler. Finsler Set Theory: Platonism and Circularity. Birkhauser, Zurich, 1996. David
Booth and Renatus Ziegler eds.

Juliet Floyd. Homage to Vienna: Feyerabend on Wittgenstein. In Friedrich Stadler and Kurt
Fischer, editors, Paul Feyerabend: ein philisoph aus Wien, pages 99-151. Instituts Wiener Kreis,
Wien, 2011.

Derek Goldrei. Classic Set Theory For Guided Independent Study. CRC Press, Florida, 1996.

Imre Lakatos. Falsification and the methodology of scientific research programmes. In Imre Lakatos
and Alan Musgrave, editors, Criticism and the Growth of Knowledge, pages 91-196. Cambridge
Press, 1970.

Imre Lakatos. Proofs and Refutations. Cambridge Press, 1976.

Imre Lakatos and Paul Feyerabend. For and Against Method. University of Chicago Press, 1999.
Mateo Motterlini ed.

Donald Mackenzie. Mechanizing Proof: Computing, Risk and Trust. MIT Press, Boston, 2001.

Steven Meyer. Pragmatic versus structured computer programming. www.tdl.com/~smeyer/docs/
StructProgBook-IntendedThesis.pdf| of mar. 2013, intended UC Berkeley CS Ph.d thesis, 1983.

Steven Meyer. The effect of computing on understanding truth. In Charles Ess and Ruth Ha-
gengruber, editors, JACAP: The Computational Turn: Past, Presents, Futures?, pages 54—58.
Myv-Wissenshaft, Munster, 2011.

Peter Naur. Knowing and the Mystique of Logic and Rules. Kluwer Academic, Amsterdam, 1995.

Peter Naur. Computing as science, pages Appendix 2, 208-217. naur.com Publishing, 2005.
www.Naur.com/Nauranat-ref.html URL of Mar. 2013.

Peter Naur. Computing versus human thinking. Commaunication of the ACM, 50(1):85-94, 2007.

Peter Naur. Conversations - Pluralism in Software Engineering. Lonely Scholar Publishing, Bel-
gium, 2011. Edgar Daylight ed.

Otto Neurath. Correspondence between Otto Neurath and Karl Popper. Vienna Circle Archive,
Haarlem, Holland, 1936.

Roger Penrose. Shadows of the Mind: a Search for the Missing Science of Consciousness. Oxford
University Press, 1994.

Roger Risch. The problem of integration in finite terms. Transactions of the American Mathe-
matical Society, 139(5), 1969.

Dana Scott. A proof of the independence of the continuum hypothesis. Theory of Computing
Systems, 1(2):89-111, 1967.

Lee Smolin. The Trouble with Physics: The Rise of String Theory, The Fall of Science, and What


www.tdl.com/~smeyer/docs/StructProgBook-IntendedThesis.pdf
www.tdl.com/~smeyer/docs/StructProgBook-IntendedThesis.pdf
www.Naur.com/Nauranat-ref.html

Naur’s Anti-formalism

Comes Next. Houghton Mifflin, New York, 2006.
[29] Torstein Veblen. The Higher Learning in America. Transaction Publishers, New Jersey, 1918.

[30] Ludwig Wittgenstein. Wittgenstein’s Lectures on the Foundations of Mathematics Cambridge 1939.
University of Chicago Press, 1939. Cora Diamond ed.



	Introduction
	Naur's Criticism of Mechanical Cognitive Information Processing
	Discussion of Naur's Philosophy
	Lakatosian Methodology of Research Programmes (MSRP)
	Methodological Advantages of my Falsification of Structured Programming
	Toward Dataology Academic Study of Computing
	Ideological Suppression Issue Must be Solved
	Two Organizational Proposals
	Study Areas for Human Centric Dataology


