

The One Million Gate ASIC Challenge:

Not with Behavioral Modeling and Synthesis

Steve Meyer
Pragmatic C Software Corp.

220 Montgomery Street, Suite 925
San Francisco, CA 94104

(415) 296-7017 - FAX (415) 781-1116

Abstract: The large ASIC IC design problem is
discussed within the Verilog hardware description
lanaguage research program. Large ASIC design
using the behavioral design with synthesis method
is shown to be infeasible by showing that
evolutionary improvement of traditional gate level
tools and increased logic designer skill is both
necessary and sufficient. Suggestions for applying
Verilog to large gate level ASIC design and for
improving Verilog in the accurate timing gate level
simulation area are made.

1. Introduction
Advances in semiconductor manufacturing

technology will soon make ASICs containing one
million usable gates (four million CMOS transistors)
technologically feasible. The ten fold increase in
functionality over current large gate arrays poses a
challenge to digital ASIC logic design and verification.
There are two competing design approaches applicable
to such large ASICs. One approach advocates a
fundamental change in method and design tool selection
in which ASICs are designed at the abstract behavioral
level and then mapped by means of synthesis computer
programs to ASIC vendor nets lists for manufacturing.
The term synthesis is applied both to mapping from
behavioral to gate level and to the entire abstract
behavioral method. This method uses abstraction and
formal verification to solve the circuit complexity
problem.

The other approach advocates evolutionary
improvement to current digital logic design methods
while continuing to use current tools such as schematic
editors, simulators and timing verifiers at the gate level
(circuits coded in terms of vendor defined macrocells).
Improvement occurs through improved designer skill,
increased designer experience, and faster or more
accurate tools. This method advocates using the
cunning of human reason to solve the circuit complexity
problem.

The ASIC complexity problem is the central
challenge now facing design using Verilog and in the
authors opinion should provide the major impetus for
Verilog language development. Verilog is now the sign
off simulator of choice for most ASIC vendors.
However, since the transfer of responsibility for the
Verilog standard to Open Verilog International, the
version 2.0 Verilog Language Reference Manual (LRM)
and most commercial Verilog simulator improvements
are aimed at improving Verilog’s application to the
behavioral modeling with synthesis method. The LRM
now includes suggestions for using Verilog for synthesis
intermixed with the language definition (OVI[1993], for
example 4-4, 5-5, 8-11) instead of providing a separate
manual that discusses using Verilog for synthesis so that
only those interested in synthesis would need to read the
material. When vendors discuss simulator
improvements, improved behavioral and RTL (register
transfer level) simulation are primary topics.

This paper presents the argument against abstract
behavioral design. It shows that the behavioral method
is at best an untried method in the ASIC cell based
design area whose support has come solely from
anecdotal evidence.1 It argues Verilog should remain
design methodology neutral. This paper challenges
application of formalist behavioral design as
characterized by the AI research program
(Lighthill[1973]) to digital logic design.2 It is important
because most ASIC vendors have announced they will
soon change to the behavioral method. The same ASIC
vendors who spend years evaluating wafer production
equipment, run extensive controlled experiments and
even then slowly phase in new equipment are for some
reason rushing to adopt the untried behavioral method.

1. See for example various user synthesis experience papers from
any recent Design Automation or IC CAD conference proceed-
ings.

2. See Meyer[1993a] for a falsification of the related silicon struc-
tures IC layout method. Silicon structures is related to behavioral
synthesis since both methods apply formal mathematics (Laka-
tos[1976], Fetzer[1988]) to electronic circuit design.

Verilog design methods and language changes are
presented for those who believe competitive advantage
can be achieved by continuing to utilize traditional gate
level tools.

After providing detailed definitions of the two
methods, behavioral models are shown to lack timing
and unknown state accuracy required for correct ASIC
design. This falsifies3 the strong form of abstract
behavioral design that states that once abstract
behavioral design is complete, remaining design steps
are mere routine data processing. Section 3.2 falsifies
the first weaker form of behavioral design through
synthesis that starts with behavioral abstraction then
uses synthesis to produce a gate level net list which then
becomes the starting point for normal gate level ASIC
design.

Section 3.3 falsifies the second weaker form of
synthesis in which a designer creates a net list indirectly
by hand coding behavior descriptions, functional
constraints, and synthesizer control commands that are
used to control execution of a synthesis program. In the
second weaker form, a designer studies output net lists
from synthesis, modifies constraints and control
commands and then reruns the synthesizer program.
Synthesis here is, in the weakest form of abstract
behavioral design, merely net list translation to reduce
ASIC net list coding effort and in the view of the author
is less efficient than simply drawing one’s design with a
schematic editor. The falsifications taken together show
that one million gate ASICs will never be achieved by
abstract behavioral design with synthesis.

The next section discusses problems for which
Verilog style behavioral and RTL modeling can be
advantageously used. It is important for successful one
million gate ASIC design to understand that the primary
circuit model is the gate level macro cell net list and
that it must be understood in detail by experienced logic
designers. But to debug and verify such large designs,
behavioral features of Verilog become valuable. Also,
correct ASIC function within a digital electronic system
can be advantageously verified using Verilog. Finally,
changes to Verilog to assist in large ASIC design are
presented.

2. Design Method Comparison

2.1 Behavioral Abstraction through Synthesis
The widely publicized behavioral abstraction

method advocates fundamental change in design tools

3. Falsification is used here in the Popperian (Popper[1959], Laka-
tos[1970] or Lakatos[1976]) sense of refutation of the correctness
of a scientific theory by means of experiment or argument.

selection in which designers work only at the behavioral
level and computer programs map from behavioral
specifications to semiconductor vendor ASIC macro cell
net lists. This mapping is called synthesis.4 According
to advocates of abstract behavioral design through
synthesis, by moving circuit design to a higher level of
abstraction, interconnection complexity of large circuits
can be reduced (deGeus[1993]). Large circuit blocks
can be modeled behaviorally and verified using
behavioral features of a simulator. Synthesis can map a
circuit to gates for fabrication.5 According to synthesis,
the resulting gate level circuit need not undergo further
verification since it’s correctness is guaranteed (possibly
by means of formal mathematical proof).6 In practice
ASIC vendors still require gate level simulation7 using
designer supplied test patterns.

The high level behavioral method claims to reduce
labor involved in circuit design by moving design to the
abstract behavioral level and by allowing large
behaviorally coded circuit blocks to be reused in
different designs. ASIC design becomes electronic
system architecture and the one million gate ASIC
design problem becomes object oriented behavioral
programming.8

2.2 Evolutionary Improvement to Traditional
Gate Level Design

The traditional tool gate level design approach
advocates evolutionary improvement to current
methods. Current tools such as schematic editors,
simulators with accurate gate level capability and
timing verifiers are utilized by experienced designers.
According to this method, accurate gate level timing
simulation is the correct level for ASIC design because
gates physically exist on the ASIC substrate and
because vendor macro cells are defined by intrinsic gate
output loading and interconnect metalization delay

4. A better name for synthesis in evaluative neutral language might
be: behavioral to gate model net list mapping. A possible name in
critical language might be: designer blind replacement of inaccu-
rate behavioral models by slow canned gate level circuit sections.

5. Fabrication here is used for any method that customizes ASIC
interconnects such as field programming. However, currently
large ASICs require at least fabrication (etching) of wafer metali-
zation layer interconnects.

6. See Fetzer[1988] for a falsification of formal proof of computer
programs.

7. Simulation in this paper means mimicry of the binary logic
switching behavior of an ASIC design. High level behavioral
design sometimes confuses digital simulation with system simula-
tion that is used to verify correct function of a large system when
statistically distributed stimuli are applied.

8. See McGregor[1990] for an CACM issue devoted to object
oriented programming. See Brooks[1987] or Guthery[1989] for
criticism of object oriented software design.

(Dhimant[1990]). Higher level behavioral simulation is
inaccurate because differences between transistor pair
rise and fall switching times and gate loading cannot be
modeled behaviorally.9

Lower level analog simulation using probably Spice
(Nagel[1975]) is unnecessary because all analog effects
must be removed from macro cells or volume IC
manufacturing would be impossible. Even if analog
simulation were faster than gate level simulation, ASIC
modeling and simulation must be performed at the gate
level because gate level simulation can accurately
model unknown state behavior of ASICs (during reset
operations unknown logic levels and timing violations
probably can be safely ignored), and because gate level
models allow ASIC vendors to improve process
parameters and macro cell design without effecting
ASIC function and therefore gate level timing.

Evolutionary skill improvement means utilization of
better trained and more experienced logic designers.
One million gate ASIC design may not be so difficult for
design groups with senior designers who have
experience with hundred thousand gate macrocell coded
circuits. Experienced ASIC designers can develop
improved architecture and improved circuit gate level
specifications during circuit development. Functional
and logic improvement go hand in hand with
improvements in one area facilitating improvements in
another. Each solved concrete problem can improve
conceptual understanding of a design.

Evolutionary tool improvement means incremental
increase in functionality, speed of execution or ease of
use. Faster programs on faster computers allows more
testing and debugging within given economic design
constraints. In addition, improvement can mean slower
execution in order to more accurately model gate
switching function. Such improvements are better and
more rapid unknown (x) injection for problematic
switching, spike analysis (Szygenda[1972]) and other
kinds of timing problem detection (Bose[1977]).
Finally, tool improvements can mean simplified circuit
debugging and analysis. For example, improvements to
specificity of breakpoint setting and signal viewing can
increase the ability of skilled designers to deal with
complexity of large ASIC designs.

The current gate level method unifies ASIC vendor
substrate and macro cell library design and customer
ASIC design by providing one unified view (accurate

9. This lack of internal circuit detail representation explains why the
various Verilog path delay timing constructs (OVI[1993], pp.
14,2-38) are only useful where path polarity changes do not effect
off block delay and after gate level design so that path delays can
be determined by measurement.

timing gate models with layout determined wire delays)
referenced by all designers. The gate level method
converts large ASIC design to application of circuit
function specific knowledge by skilled designers. Such
designers must be free to choose tools according to
individual and design group tastes.

3. Falsification of Synthesis

3.1 The Strong Behavioral Method
In the strongest form of synthesis, a circuit is

designed only at the behavior level. After behavioral
design the final ASIC is synthesized by in effect pushing
a button. The strong method cannot work because
accurate timing analysis is impossible. It is impossible
to predict complex circuit (containing sequential logic)
behavior without simulation. Otherwise, at least some
ASIC vendors would allow circuit sign off without
simulation. Behavioral design lacks any conceptual
path for converting timing problems detected during
simulation to circuit design improvement. This
falsification does not depend on arguments from
practice. Efficiency considerations are irrelevant. If a
high level behavioral design fails in simulation, a circuit
must be thrown away. Only complete high level
behavioral system redesign is possible.

This impossibility of high level behavioral synthesis
should not be surprising for various reasons.
Development of the synthesis tool itself is equivalent to
the general artificial intelligence problem because
circuit design includes much intuition and experience
(Lighthill[1972]). Published technical papers
supporting synthesis use examples that are redesigns of
previously intuitively designed circuits and even then
the class of synthesizable circuits, according to
published research papers, is severely restricted (most
notable is sequential feed back). This pattern of
promising initial resulted followed by lack of
confirmatory evidence is known as post facto scientific
results and has historically indicated that a research
program was in its degenerative stage (Lakatos[1970]).

The behavioral synthesis research program has
followed the same pattern that failed for artificial
intelligence (Lighthill[1972]), automatic programming
(Earley[1973], Earley[1975]), and natural language
translation.10 Initial positive results from toy problems
become negative results when more realistic problems
are considered. One cause is the combinatorial
explosion in the size of the circuit logic state space that

10. See Winograd[1973]. Dreyfus[1986], pp. 67-90 discusses this pat-
tern in detail.

must be searched. The number of circuit states grows
exponentially with circuit size since a computer
program it at best able to perform combinatorial search
of the state space. Notice human intuitive gestalt driven
problem solving is not limited by this combinatorial
explosion.

Behavioral synthesis forces exclusive top down
design eliminating the common methods that combine
various styles of design such as design toward a goal,
work from bottom up by designing a project specific
higher level macrocell library, using top down for the
initial design conception and partitioning, mixed top
down and bottom up design, etc.

The author is unaware of any publication of
controlled experiments showing the advantages of
behavioral synthesis. Such experiments would explain
where the method works, where it does not, and would
offer possible explanations of the results. No new
method should be adopted without such experimental
verification. Related to the lack of proof by controlled
experiment is the difficulty characterizing human design
methods. Because of the attention received by
behavioral synthesis it is now advantageous for a
designer’s career to claim that synthesis was used even
if an ASIC were designed using traditional gate level
tools. Claims of successful application of synthesis
must be carefully verified.11

3.2 The Initial Net List Creation Synthesis
Method

In the first weaker form of synthesis, high level
abstraction is used to design circuit architecture,
synthesis is used to create a net list that then becomes
the starting point for normal gate level ASIC design.
Here synthesis is first cut net list generation. As shown
above, strong behavioral synthesis cannot work because
timing information has been removed from design. The
first weaker form of synthesis is useless since timing
information cannot be represented. If circuit
performance and cost were irrelevant to ASIC design,
this weak form of synthesis could conceivably work.
An ASIC net list could be synthesized, simulated to
debug logic function and results from simulation could
then be used to set system clock period to the maximum
delay path through the resulting ASIC. However, such a
circuit would be considerably larger, slower and
therefore more expensive than hand crafted circuits. In

11. A similar lack of method workability proof exists in the related
object oriented programming area. Even though C++ is replacing
C in terms of number of units sold, the percent of C++ compiler
software programmers who utilize the unique C++ features is low
(Floyd[1989]).

a competitive world, such inefficient methods are in
effect unworkable. In reality, the improvement of 10 to
25 percent, assuming the same technology, in clock rate
and 30 to 50 percent in circuit area achieved among the
very best designers compared to only good designers
can make the difference between a successful and
unsuccessful system.

This weak form of synthesis as net list template
generation is based on the assumption that once a high
level architecture is designed, the ASIC implementing
the architecture is just a combination of circuit
submodules. Design is portrayed as reuse of expert
knowledge. Here, gate level timing information added
after synthesis is trivial and small in volume. This view
misses both the difficulty of ASIC logic design and
potential system improvement achievable through
improved gate level design.12

The crucial part of ASIC design occurs at gate level
during accurate timing net list and test pattern
preparation. In fact, the following gate level design
improvements offer the most potential for overall
improvement to an electronic system.13 1) Improvement
of latch or flip flop selection used to implement time
critical paths. 2) Careful analysis of logic polarity
versus required inverter insertion, 3) Elimination of as
much clear, set and complicated flip flop clocking logic
as possible. 4) Basic block specialization in which a
circuit consisting of one type of basic register or block
is improved by changing to specialized blocks for each
required function. The cost is in syntactic complexity
but experienced designers have little trouble with
numerous but conceptually similar functional blocks. 5)
Utilization of discovered timing problems to motivate
redesign improvements in system partitioning and
interface specifications. Of course, some interfaces
such as connections to standard busses must not change.
6) Use of ASIC sign off and manufacturing test pattern
development problems to locate problematic circuit
areas.

This first weak form of synthesis is useless because
it applies only to initial net list preparation that is a
small part of ASIC design yet eliminates availability of

12. An example of this oversimplification occurred in EDIF 2.0
(EIA[1988]). A form for representing gate capacitance was
included but it only allowed representation of constant capaci-
tance. No mechanism was included to represent the various
mostly linear factors upon which capacitance depends let alone
the various complicated formulas required to compute capacitance
and inductance in net list interconnection trees. Also forms for
distributing capacitance were not included.

13. Most of these areas of improvement were observed by the author
in designs completed at the LSI Logic Milpitas design center dur-
ing the middle 1980s.

circuit schematics.14 It can not be iterated. Once an
initial net list is synthesized, the method reverts to
traditional gate level design. At best this method may
contribute to designer psychology.

3.3 Synthesis by Means of Command and
Constraint Coding

In the second weaker form, synthesis is used to
indirectly create a gate level net list under control of
synthesis computer program constraints, behavior
descriptions, and commands. This could be called net
list creation by template selection or possibly indirect
design concept injection by means of computer program
command language coding. The second weaker form of
synthesis is also useless since the designer is still coding
the ASIC net list but the coding is indirect through
computer program input.

This method may work for standard circuit blocks
such as adders. All the various parameters required to
specify an adder are codeable in the synthesis tool
constraint and command language. Adder factors are:
behavioral clues such as carry handling requirements,
constraints to determine timing, and commands learned
by a designer from experience to cause the synthesis
program to select the adder template that the designer
knows is needed. The designer next studies and
probably simulates the output circuit and if the net list is
not the one the designer had in mind, parameters are
changed and the process is iterated. It is possible for
designers to become skilled at command language
encoding to produce a desired output circuit. Here, if a
gate in a synthesized block has the wrong drive (for
example, causing it to have too much delay), a designer
would modify specifications to change constraints to
cause a gate type with correct drive strength to be
selected. This indirect process is so cumbersome why
bother with it. Why not just draw the design.15

Even in this simple case where synthesis by
command selection is possible, the synthesis program
will probably not be able to take advantage of circuit
function specific knowledge. For example, unless the
adder is to be used in a computer arithmetic unit, there

14. Although a discussion of schematic editors is beyond the scope of
this paper, the availability of schematics is considered important
by many design groups especially for transfer of designs to
manufacturing. There are programs that can map from net lists to
schematics but they are not widely used because the important
pictorial representation of design conception is missing.
Schematics also may help traditional gate level design by provid-
ing gestalt images of circuit design conceptual frameworks in the
same sense that X rays provide such images for medical diagnosis.

15. There must be people who would rather drive a car by sitting in
the back seat and using remote controls, but that would not be
considered a workable driving method.

are probably numerous problem specific constraints on
the class of inputs that the adder will need to process,
but it will be unlikely that the synthesizer template will
be able to deal with those patterns.

For more complicated blocks such template
selection will not work because there will probably be
no matching template. Even if a matching template for
a given function exists, large speed and area
improvement will probably be achievable by combining
different functions into the same logic block. A new
combined block will probably not exist in the
synthesizer template library because if a synthesizer
attempts to incorporate all possible templates it will
soon become useless. Circuit state space size will grow
exponentially. Circuit arrangement options of a
synthesis system will be limited in important intuitive
design areas such as high assertion direction selection,
latch or flip flop type and glue logic patterns.

Here, Circuit design becomes dependent on research
in synthesis because synthesis of, for example, common
sequential logic is still an open problem. There will be
no designer skill improvement since low level
interconnect experimentation and simulation is
impossible. There will be no circuit design progress
since synthesis from templates eliminates the possibly
of discovery of better methods for circuit block net list
construction. Undiscovered block designs cannot
possibly already be in the template library. There is a
good chance that experts who designed the synthesis
template library will lack problem specific knowledge
for non standard circuit functions. Finally, by
generating net lists from templates, resulting circuits
can be at best as good as competitor’s circuits (also
probably not much worse).

4. Applying Verilog to Large ASIC Design
The previous sections have shown that the object of

ASIC design must be accurate timing model gate level
net lists and that detailed intuitive understanding of the
gate level design is crucial. This section suggests
approaches for utilizing the extensive programmability
including the programming language interface (PLI)
and behavioral modeling capability of Verilog to assist
in ASIC design. Although Verilog gate level simulation
is not significantly better than that provided by previous
gate level only simulators, it is much more useful for
ASIC design. In earlier simulators, circuit error
detection (timing errors), stop gap models for unfinished
interfaces, and complex debugging conditions could not
be expressed. Programming was only applicable through
analysis of I/O port activity traces written in tabular
form. Even though traces have utility and are available
in Verilog using the $dumpvars system task, such traces
are less valuable than online access to internal circuit
state through monitoring and cross module hierarchical

variable examination.

4.1 Using Behavioral Features
Behavioral features can be applied during ASIC

design and during verification of correct ASIC function
within a larger system. There are a number of obvious
uses of behavioral Verilog features such as monitoring
and strobing signal changes, using event and delay
controls to set change breakpoints or forcing a circuit to
a required state during debugging. Here behavioral
features implement the debugger.

Another use of behavioral features involves coding
simplified models for uncompleted design sections and
prototyping of experimental designs during ASIC
development. In a sense behavioral features would not
be required if every ASIC development project went
according to plan. One important use of behavioral
modeling allows debugging part of a circuit when
blocks it interacts with are not yet finished. Here a
simple behavioral model can be coded to mimic just
enough of the missing subcircuit’s behavior to allow
debugging of the completed part. Subcircuit I/O
behavior can be modeled by driving output ports with
continuous assignments whose right hand side
expression are registers controlled by procedural tasks
and functions. Inputs can be monitored directly by
procedural code. Whatever timing accuracy is needed
can usually be modeled by specify section delay paths.
The limitations of specify paths discussed in the first
item in section 5 will normally not be a problem for this
kind of modeling.

A more sophisticated form of behavioral modeling
involves coding circuit models for the sole purpose of
monitoring ASIC state during debugging. Normally,
tasks will be written that access wires through cross
module references. The internal states can then be
compared to expected values and messages can be
written to indicate discrepancies. These tasks are run
during simulation but will not exist in the fabricated
circuit. Using the PLI for monitoring allows additional
programmability. For example, a circuit that
implements a communications protocol could be
checked with a PLI task C program that computes and
compares intermediate results.

The second area of behavioral modeling involves
verification of a completed ASIC in a system. One
approach involves first replacing the finished accurate
timing model ASIC (accurate timing here means
including post layout wire delays) with a unit delay
model and verifying identical system function with the
new delay model. Next replace the unit delay model
with a behavioral model (possibly implementing only
the interface) and then repeat the system tests. Any
needed I/O port delays here are determined from
measurements of the completed ASIC. These steps

insure that the chain from gate level function to
electronic system function matches reality.16 The
author believes that exactly this Verilog capability
allowing complete connection of the chain from gate
level to system function will lead to replacement of all
other HDLs by Verilog.

5. Changes to Verilog to Improve ASIC
Design
Even though Verilog is the reference simulator for

most ASIC vendors, there is still room for
improvements in Verilog gate level modeling accuracy
and flexibility.17 The following changes should be
made:

1. Per Instance Back Annotation of Gate Delays
Verilog needs a mechanism for back annotation of
different gate delays for each instance of the
module containing a given gate. Currently,
specify paths are required solely to allow PLI
back annotation. However specify paths have a
number of problems. First, accurate modeling
sometimes requires use of inconsistent and
obscure module input port delays (MIPDs) for
multiple paths with one destination but different
delays. Second, for macro cells with many ports
but little internal activity, gate models are more
efficient since only the gates on active paths are
evaluated and scheduled. Third, specify paths can
be inefficient for modules with many input and
output ports because the number of specify paths
through a module is the product of the number of
input bits times the number of output bits. All
specify paths that have the same destination must
be evaluated sequentially to determine the latest
input change. Fourth, rise and fall delays can not
be accurately modeled for paths with numerous
inversions. Finally, the calculation for adding
internal layout wire delays to macrocells modeled
using specify paths is difficult. Which paths need
to be changed after an internal wire length
change?

2. All Specify Section Capabilities Should be
Available for Gates
There should be some concept of pseudo gate so

16. This is the lesson learned from almost a century of aircraft design
first in wind tunnels and now by computer simulation. Simulation
is useless and will not prevent aircraft failure unless constantly
connected to and improved from test pilot experience and meas-
urements of manufactured airplanes.

17. See Meyer[1993b] for a discussion of changing Verilog behavioral
features.

that timing checks and possibly path pulse
checking and other delay calculator capabilities
would be available by coding some kind of
special gate. A debugging library then would
include models coded with checking pseudo gates
while a verification library would not include any
specify section function checking bodies. Also,
PLI tf_ style calls and some construct for
interactive back annotation should be added for
specify section functionality pseudo gates.

3. Add Spike and Hazard Analysis While Keeping
Inertial Delays.
Spike is defined as a pulse that is so narrow that it
may or may not cause a gate to switch
(Szygenda[1972]). Since most processing
required to perform spike analysis is needed for
Verilog’s inertial delays, adding this feature to
produce timing check like warnings and at time of
detection unknown (x) injection would improve
gate modeling accuracy. Inertial only delay
modeling should be kept since it offers a good
compromise between simulation efficiency and
accuracy. It allows rapid changes to unknowns
when switching problems occur and has the
advantage that no list searching is required in the
gate evaluate-schedule-propagate loop. Other
more accurate delay model either require more
storage per wire bit, or require scheduling
algorithms that take time "roughly" proportional
to fan-in and/or fan-out.

4. Change to C Language Style Preprocessor
It is currently difficult to quickly modify a gate
level net list because it is not possible to simply
define a textual macro substitution. For example,
given the following PLI task call:

$a_long_lost_user_pli_task(xx);

it is not possible to replace it with a call to a
dummy Verilog task because it is missing the
leading back quote macro indicator. At best, one
must plan for symbols that may need substitutions
by using a macro from the start. Many of the net
list problems and library problems caused by
multiple models with the same name are caused
by limitations in current macro preprocessor
semantics. For efficiency reasons, the C style
preprocessor should be built into the language so
that one pass parsing remains possible.

6. References
McGregor[1990] McGregor, J., and Korson, T. (eds.)

Entire issue on object oriented
programming. CACM. 33, 9
(September 1990), 39-159.

Bose[1977] Bose, A., and Szygenda, S. Detection
of static and dynamic hazards in
logic nets. Proceedings 14th Design
Automation Conference, June 1977,
220.

Brooks[1989] Brooks, F. No silver bullet: essense
and accidents of software
engineering. IEEE Computer, 20,4
(April 1987) 10-19.

deGeus[1993] de Geus, A." 1,000,000 gate asic?
Not with present EDA tools. IEEE
International ASIC conference, 1993.

Dell’oca[1988] Dell’oca, C. Gate array technology.
Proceedings IEEE ICCD, 1988, 296-
299.

Dhimant[1990] Dhimant, P. Charms:
characterization and modeling
system for accurate delay prediction
of ASIC designs. Proceeding IEEE
Custom Integrated Circuits
Conference, 1990, 9.5.1-9.5.6.

Dreyfus[1986] Dreyfus, H., and Dreyfus, S., Mind
over Machine. MacMillan Inc. Free
Press, 1986.

Earley[1973] Earley, J. Relational level data
structures in programming languages.
Acta Informatica, vol. 2, (1973), 293.

Earley[1975] Earley, J. High level iterators and a
method for automatically designing
data structure representation. J.
Computer Languages, vol. 1 (1975),
321-342.

EIA[1988] Electronic Industries Association,
"EDIF design interchange format 2 0
0", ANSI/EIA-548-1989, march 1988.

Fetzer[1988] Fetzer, J. Program verification: the
very idea. CACM. 31, 9 (September
1988) 1048-1063.

Floyd[1989] Floyd, M. Hindsight and the crystal
ball (editorial), Dr. Dobbs Journal,
14, 12(December 1989) 6.

Guthery[1989] Guthery, S. Are the emperor’s new
clothes object oriented? Dr. Dobbs
Journal, 14, 12(December 1989) 80-
86.

Lakatos[1970] Lakatos, I. Falsification and
methodology of scientific research
programmes. In I. Lakatos and A.
Musgrave (eds.), Criticism and the
Growth of Knowledge. scientific
research programmes. Cambridge,
1970, 91-196.

Lakatos[1976] Lakatos, I. Proofs and Refutations.
Cambridge, 1976.

Lighthill[1972] Lighthill, J. Artificial intelligence -
A general survey. Also known as the
Lighthill Report. Cambridge
University, July, 1972.

Meyer[1993a] Meyer, S. Against the Silicon
Structures IC Design Methodology.
In preparation, 1993.

Meyer[1993b] Meyer, S. The argument for leaving
the Verilog language unchanged.
Proceedings 2nd International
Verilog HDL Conference, 1993,
154-159.

Nagel[1975] Nagel, L. SPICE2: a computer
program to simulate semiconductor
circuits. ERL Memo ERL-520,
University of California, Berkeley,
May 1975.

Newell[1983] Newell, S.B., de Geus, A.J., and
Rohrer, R.A. Design automation for
integrated circuits. Science, 220
(4956) (29 April 1983) 465-471.

OVI[1993] Open Verilog International, Verilog
Hardware Description Language
Reference Manual. Release 2.0,
March, 1993.

Popper[1959] Popper, K. R. The Logic of Scientific
Discovery. Hutchinson: London,
1959.

Szygenda[1972] Syzgenda, S, Tegas2-Anatomy of a
general purpose test generation and
simulation system for digital logic.
Proceedings 9th Design Automation
Workshop, June, 1972.

Wilkes[1990] Wilkes, M. It’s all software, now.
CACM. 33, 10 (October 1990) 19-21.

Winograd[1973] Winograd, T. A procedural model of
language understanding. In R.
Schank and K. Colby, (eds.)
Computer Models of Thought and
Language. W. H. Freeman Press,
1973.

