
Turing Machines are weak - philosophical
discussion of computational hardness

Steven Meyer

Tachyon Design Automation, Boston, MA 02128
smeyer@tdl.com

Presented July 26, 2023 at CLMPST 2023 Buenos Aires

Slides will be posted on my web page www.tdl.com/˜smeyer



Introduction
• I argue here that the Cobham-Edmonds thesis that

computational problems can be feasibly computed only if they
can be computed in polynomial time is problematic because
problems in the NP class can be computed in polynomially
bounded time on von Neumann style computers we all use
called MRAM model.

• I think the earliest paper discussing polynomial hardness by
Alan Cobham was presented at the 2nd CMLPS in 1964. Ref:
Cobham, A. “The intrinsic computational difficulty of
functions.” 2nd CLMPS, ed. Y. Bar Hillel, 24-30, 1965.

• Background is the artefact called ”digital computer” is
thought to be able to compute anything expressible as a
Turing Machine (TM) “program”. Called the Church-Turing
thesis. TMs are universal but a TM program may take
unfeasibly long time.

• I am presenting the physicist view of computation complexity.



P=NP

• The Cobham-Edmonds thesis is usually expressed as the
P?=NP problem. If the class of problems computable in
polynomial time on a TM is not the same as the class of
problems that are only computable on a non deterministic TM
(NDTM) in polynomial time, then the Cobham-Edmonds
thesis is a good measure of problem hardness.

• The class NP is usually expressed as a problem is in the class
if a yes/no question guessed solution can be checked on a
deterministic TM in polynomial bounded time.

• A possible problem with the class NP is that the question “are
two regular expression equivalent” is a “linguistic” yes/no
question that is outside NP but maybe is feasibly computable.

• The reason why a difference is possible (TM P?=NP problem
is unsolved) is that TMs are weak machines because they
require unary tape encoding and lack random access.



MRAM model
• MRAM model has the same properties as modern physical

computers. It contains a bounded number of unbounded size
random access memory cells. Multiplication and selection are
available and all have unit cost.

• In 1974 Hartmanis showed that P=NP in the MRAM model
because NDTM can be simulated in deterministic polynomial
time using normal computer random access tables. One Ref:
Hartmanis, J. and Simon, J. “On the Power of Multiplication
in Random Access Machines,” Sep. 1974.

• The Hartmanis conceptualization of NDTMs assisted the
proof. TMs are deterministic if there is only one copy of a
branch to label. For a NDTM model, one or more labels will
have multiple copies. This allows simulating NDTM MRAMs
on a deterministic TM MRAM by constructing suitable look
up tables (building a data base).

• This is similar to modern programming language switch
statements implemented as indexed tables.



Neumann computer design

• I am arguing that Neumann studied abstract models and
specifically rejected the TM model and chose the MRAM
model.

• Neumann thinking in developing modern computers became
available only in the 1990s partially because much of his work
had been classified.

• Two books explain Neumann’s thinking and quote his writing.
Aspray, W. “John Von Neumann and The Origins of Modern
Computing.” 1990. Also: Redei, M. and Stoeltzner, M. (eds.)
“John von Neumann and the Foundations of Quantum
Physics.” Vienna Circle Institute Yearbook 8, Kluwer, 2001.



Neumann thinking

• Applied mathematician Neumann had abandoned Quantum
logic and Hilbert’s logicism programme when he began
designing a computer.

• Wolfgang Pauli told Neumann. “If a mathematical proof is
what matters in physics, you would be a great physicist”
(Redei[2001], p. 5).

• Neumann was automating the Manhattan Project physicist
(Feynman?) organized calculator operator team plus punched
card sorting machine method.

• Neumann argued that program complexity needed to be
increased. Computers were needed for calculating complex
partial differential equation models. Simple differential
equation models were inadequate for the physics.



Neumann desired computer properties

Neumann made a list of desired computer properties as part of his
work designing the Eniac (Aspray[1990]).

1. A computer would have a finite number of randomly accessed
binary encoded memory locations.

2. Computers need to be built large enough for the given
problem.

3. Instructions and data were mixed with indirect addressing,
selects and indexing.



Karp/Cook problem Reducibility to 3-SAT
• Back to discussion of Cobham-Edmonds thesis. The thesis

became plausible because of Karp/Cook reducibility.
• In 1971 Stephen Cook showed that the problem called 3-SAT

that goes back to Tarski definition of truth is in the class NP,
i.e. it is requires a NDTM to be computed in polynomial
bounded time.

• A formula is T (satisfied) if there exists an assignment of true
or false to each variable that makes the formula true.

• Richard Karp then showed that many (all?) interesting graph
theory and combinatorics problem can be reduced to 3-SAT in
TM polynomial bounded time. (ref. Karp, R. “Reducibility
among combinatorial problems,” 1972).

• This was viewed as either positive evidence for the
Cobham-Edmonds thesis because it explained why no
polynomial algorithms were being found or as negative
evidence because it implies there is only one combinatorial
problem.



Knuth’s approach - count number of steps
• Problem with Knuth’s concrete complexity is that a given

program may not be efficient.
• But even worse, how to count is sometimes unclear. The

graph pre dominator problem shows the lack of counting
clarity.

• Pre dominator is polynomially bounded so Cobham-Edmonds
thesis does not have the concrete complexity number of
operations counting problem.

• Claimed fastest algorithm is the Lengauer Tarjan tree building
algorithm (Ref. Lengauer, T and Tarjan R. “A Fast Algorithm
for Finding Dominators in a flowgraph,” 1979).

• I think the Cooper-Harvey algorithm (Ref. Cooper, K. et. al.
“A simple, fast dominance algorithm,” 2001) is not just faster
in practice but faster using concrete complexity counting.

• Problem is that the Cooper algorithm is heaped base. A heap
is both a priority tree stored in array cells (leaf index is 2x
parent index) and a randomly accessible array so there may be
double counting of steps.



MRAM unbounded RAM cell problem

• TMs seemingly are better models of computation because
machine cells are finite (0 or 1 only) size while MRAM cells
are unbounded in size and cell sizes can often grow to
exponential size.

• The unboundedness infinity is also present in TMs because
the number of tape cells is unbounded and can often grows to
exponential size.

• People who write programs to solve application problems
follow Neumann’s advice. Namely, build a wider computer
with more RAM so that a given application fits on the
computer that runs a program.



Miscellaneous comment on Neumann

• Neumann literature is somewhat unclear.

• I think Neumann terminology needs to be replaced by
different modern meaning shifted words:.Automaton should be
read as ’computer’, self-reproducing Automata meant
programs generating other programs (Godel numbering and
TM simulation), ’axiomatics’ should be read as algorithm. I
am not sure of this but it is consistent with Neumann as an
applied mathematician.

• Neumann may have rejected the TM model because he was
competing with Alan Turing.



Neumann attitude toward computing

• Neumann was skeptical of the theory that the brain was a
simple computer (automaton), but as an applied
mathematician he worked on the brain as computer analogy.
He wrote this:

• The insight that a formal neuron network can do
anything which you can describe in words is a very
important insight and simplifies matters enormously at
low complication levels. It is by no means certain that it
is a simplification on high complication levels. It is
perfectly possible that on high complication levels the
value of the theorem is in the reverse direction, namely,
that you can express logics in terms of these efforts and
the converse may not be true. (quoted in Aspray[1990],
note 94, p. 32)



Quantum algorithms

• It is not clear that quantum computers (QC) parallelism is
faster than polynomial unit time operation with random
access.

• Shor in his algorithm uses P!=NP. It is not clear if this effects
run time.

• Maybe the QC Fourier transform relaxation is really just
analog computing.

• Literature is filled with improvements to MRAM speeds
compared to QCs.

• Maybe physical artefact Neumann computer properties should
be the new logic.

• Maybe quantum mechanics and modern logic needs a third
unknown (X) value. I am thinking of Hans Reichenbach three
value quantum theory.



Conclusions

• Neumann’s physical computer design and Hartmanis P=NP
proof for MRAMs implies that the Cobham-Edmonds thesis is
useless.

• The Cobham-Edmonds thesis implies that probability
(guessing) improves algorithm efficiency. The MRAM model
shows that guessing is not needed because on actual physical
computers table look up is better.

• This is maybe a way of explaining the term “big data”.

• Neumann was a strong advocate of Monte Carlo style high
level simulation using randomly changed actual program
parameters.

• Complexity seems to be similar to the concept infinity. It is
difficult to say much about it except in the specific problem
specific case. Approximate solutions need to be replaced by
application specific efficient algorithms.


