A Verilog HDL Virtual Machine

Steve Meyer
Pragmatic C Software
520 Marquette Ave., Suite 900
Minneapolis, MN 94104

sjmeyer@pragmatic-c.com

ABSTRACT

This paper defines a direct threaded code virtual machine
(VM) for executing Verilog HDL simulation. Advantages
of interpreted Verilog simulation over compiled simulation
are discussed. Reasons for developing a VM to replace a
commercial simulator’s statement representation level inter-
preter are given. Performance improvement results are pre-
sented, and direct threaded code VM interpretation prob-
lems are discussed.

1. INTRODUCTION

In this paper we describe a direct threaded virtual ma-
chine (VM) for rapid interpretation of Verilog digital hard-
ware design language (HDL). Verilog is actually three (or
more) languages in one. There is a behavioral programming
language used for modeling digital hardware at the behav-
ior level and for writing hardware test benches. There is a
structural declarative language that describes hardware net
lists. Net lists describe hardware interconnections in terms
of primitives such as gates, wires, and mask fabrication level
cells called macro cells (see Meyer[1988] for definition of net
list data structure used in this research). Third, there is a
register transfer level (RTL) digital hardware modeling lan-
guage used to describe hardware at a level that is easy for
humans to understand but can be translated to the low level
hardware net list level Verilog language component. See
the IEEE P1364 Verilog standard language reference man-
ual (LRM) for Verilog language definition (IEEE[19965]).
Also see Jennings[2000] or Allen[2002], pp. 612-622 for pro-
gramming language oriented discussion of verilog semantics.
Moorby[1989] is a commonly used text book for teaching
Verilog.

1.1 History of Interpreters

Where program execution speed is primary consideration,
compilation to native CPU machine code is the implemen-
tation method of choice. However, when the entire problem
solving process using a computer language is considered, in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and Em-
ulators June 12, 2003 San Diego, California Co-located with PLDI’03 at
FCRC’03

Copyright 2003 ACM X-XXXXX-XX-X/XXIXX ...$5.00.

Andrew Vanvick
Pragmatic C Software
520 Marquette Ave., Suite 900
Minneapolis, MN 94104

avanvick@pragmatic-c.com

terpreters often have many advantages. See Kleit[1981] and
Ert][2002] for a detailed discussion of these advantages. Pop-
ularity of Java whose semantic definition is tied to execution
by interpretation of the Java VM (see Lindholm[1999]) has
increased popularity of interpreters. Although compiled ex-
ecution is faster, interpreter efficiency has been improving
(Ert1[2001]).

1.2 Interpretation of Complex Languages

Complex computer languages, especially those with se-
mantics that require program modifications during execu-
tion such as Verilog, are a particular advantageous appli-
cation for execution by virtual machine (VM) interpreta-
tion. For such languages, not only are interpreters easier
to use and easier to develop, but may even run faster in
the future. Complex language interpreters compile (usually
incrementally) source language to a VM which is then inter-
preted. This allows application of compiler optimization al-
gorithms (see for example Morgan[1998] or Wulf[1975]). In-
terpreters are at least as popular as compilers for these com-
puter languages: APL (see for example Weigang[1985]), ML
(Leroy[1990]), Mathlab (Almasi[2002]), Prolog (Krall[1993]),
and Spice (Nagel[1975]).

1.3 Interpreter Problem Solving Advantages

Because of the growing complexity of modern computer
languages, ease of implementation and ease of user problem
solving are important. It has been know at least since the
1970s that interpreted systems with high level operations
such as iterators (see for example Earley[1975]) can improve
human intuition and therefore human problem solving. This
improved understanding can then lead to better languages
and better ways of formulating problems.

1.4 Verilog Semantics Defined by Simulator
Behavior

Since the de facto Verilog standard is still defined by be-
havior of the first Verilog simulator called Verilog XL (Ca-
dence[1997]), ease of simulator program development is im-
portant. In fact, it is almost impossible to develop a new
simulator that must match Verilog XL behavior without first
developing an interpreted implementation. Because Verilog
XL simulator and language were developed simultaneously,
originally Verilog XL interpreted a Verilog statement level
intermediate form for procedural and behavioral constructs
and used a conventional gate level simulator for structural
net list part of language. Intermediate interpreted form were
so close to source that Verilog constructs could be recon-
structed and printed from the interpreted data structure.

1.5 HDLs Differ from Programming
Languages

Because there is no reference CPU that can be used to de-
fine semantics as would exist for a programming language,
Verilog semantics is defined by conventions derived from
electronic design and manufacturing process flows. First
the Verilog HDL allowed increased digital system complex-
ity, next other computer programs (called physical ECAD
design tools) were developed that read Verilog as input and
produced mask generation tapes used to fabricate integrated
circuits (ICs). These tools were required to function in such
a way that circuits which simulated correctly also behaved
correctly when the system they are used in were manufac-
tured. Over time both physical layout tools and Verilog
have evolved so that correct simulation and correct fabrica-
tion are correlated.

This semantic co-evolution has resulted in a situation in
which nearly all Verilog primitive operations are complex.
For example, Verilog gate and behavioral delays use inertial
delay algorithm. Inertial delay imposes the limit that only
one scheduled but unmatured event can exist. Inertial delay
algorithm discards the earliest occurring of either the newly
scheduled event or the one pending event. The inertial de-
lay event retention decision requires a complex scheduling
operation that maps to over 100 CPU instructions.

The inertial delay algorithm does not exactly model dig-
ital hardware behavioral, but, by convention, digital hard-
ware design flows assume inertial delay gate switching be-
havior. However, Verilog now also supports other schedul-
ing algorithms. The other algorithms are rarely used but
needed because some hardware can not be modeled using
inertial delays. Whenever Verilog changes, and the Verilog
language itself evolves rapidly over time, all Ecad tools used
in Verilog design flows are modified to “redefine” hardware
semantics to match Verilog semantics.

1.6 Only P1364 Verilog Simulation
Considered

Because Verilog is the de facto standard HDL, there are
a number of uses of Verilog that are not considered in this
paper. Verilog is sometimes used for functional verification.
Simulation time is removed to speed up simulation using
techniques called unit delay or cycle based simulation. An-
other Verilog use replaces executed Verilog simulation by
static analysis that ” proves” circuit correctness. These tech-
niques are not covered here because they violate the use of
conventionalism for modeling hardware models. Libraries
and axioms simultaneously model the new hardware device,
its design flow, and its manufacturing flow simultaneously.
Because of the continually testing of the correlation between
full P1364 accurate delay simulation and manufacturing any
mistakes or unanticipated changes will be caught during sim-
ulation. If static analysis or functional simulation is used in-
stead, problems will not be detected until after fabrication
and the current on going failure analysis feed forward and
feed backward system will break down. Optimizations to
Verilog models for full P1364 simulation such as discussed
in Allen[2002] pp. 622-650 are also not considered because
they violate P1364. They are called ”abstraction level rais-
ing optimizations” (ibid, p. 624) but such optimizations also
cause failure analysis semantics system to fail.

1.7 Performance Comparisons Anecdotal

Except for measurements that compare our statement level
interpreter versus our Verilog VM interpreter, measurements
presented in this paper are anecdotal. Anecdotal discussions
are all that is possible because the most popular commer-
cial Verilog simulators are licensed with prohibition against
bench marking, and for that matter prohibit disclosure of
any information. Results presented below are from public
discussions concerning Verilog simulators in various internet
news groups and from general conversations with customers
and are believed to be accurate.

2. LIMITATIONS OF COMPILED VERILOG
SIMULATORS

Verilog XL is an interpreter that reads, elaborates and
simulates Verilog in one step. The other most popular com-
mercial Verilog simulators are compilers that use the com-
pile, link and simulate paradigm. Compilation to machine
code is currently considered best simulator implementation
method. However, compiled Verilog simulators have a num-
ber of disadvantages. Or viewed in another way, XL style
interpreters have a number of advantages.

2.1 Interpreters Load Faster

Interpreted simulators load faster. For common edit, load,
simulate process, interpreters load and begin simulation in
just a few seconds. In contrast, compiled simulators can
take 30 or more minutes of elaboration processing time be-
fore start of simulation. Compiled simulators often support
separate compilation. This reduces elaboration time differ-
ence but slow elaboration is still viewed as an annoyance.

2.2 Compiled Simulator Debugging Inferior

Most common type of bugs in hardware are edge prob-
lems such as wrong logic value (direction) or at wrong time
edges. Best method for catching such problems is to set
invasive event control triggers to trigger entry into debug-
ger when problem edge occurs. The break points are in-
vasive because an event control element must be added to
the problem net’s change element list that was not known
during original design elaboration. Interpreters allow debug-
ging using full power of Verilog HDL. Such invasive changes
are impossible for normal compiled simulators. Ability to
add Verilog debugging statements during simulation is pos-
sible for incremental compilers, but incremental compilation
to machine instructions without addition of interpreter type
overhead is difficult if not impossible.

Another type of useful hardware debugging involves adding
quasi-continuous force and release statements to force (tie)
a given signals to a value Quasi continuous force statements
in Verilog require either adding and removing special oper-
ators to internal net list that are checked during simulation
or changing variable assignment code when force and release
statements are executed. In contrast compiled simulators
debug by saving history of net changes (called $dumpvars)
that are viewed after the fact by a wave form viewer. To
catch a wrong edge, source must be edited and recompiled.
Quasi continuous force and release debugging is impossible.

2.3 Compiled Simulators Unportable and
Difficult to Develop

Generating code for a new architecture is known to be dif-
ficult and it is even more difficult for Verilog because Verilog

objects do not map directly onto CPU registers and Verilog
state does not map onto stack based paradigm of modern
Processors.

Shortcuts for developing compiled simulators such as com-
pilation to C followed by C compilation using an optimizing
C compiler do not work because Verilog compiled code out-
put (either native code or C) consists of a small number of
very large procedures that often require hours for C com-
pilation. Solutions such as arbitrarily breaking output into
smaller procedures result in at least a two times performance
reduction because of additional function call overhead be-
cause Verilog execution profile is not localized. Alternative
of compiling generated C with a fast compiler that does not
perform extensive optimization again results in worse perfor-
mance by at least a factor of two. A factor of two in Verilog
simulation speed is important because from anecdotal dis-
cussions for large commercial designs, Compiled Verilog NC
is usually only two or three times faster than Verilog XL.

2.4 Compiled Simulator Programming
Language Interface (PLI) API Useless

One of the best features of Verilog is that anything that
can be modeled behaviorally can also be modeled declara-
tively (gate level) and also modeled in C using the PLI. PLI
allows monitoring value changes by registering and unreg-
istering call backs, assigning values to variables using the
scheduler, and attaching call backs to most scheduler activ-
ities. Compiled simulators require user to specify an option
listing variables that can be effected by PLI. A option to
specify that any Verilog object can be effected by PLI is
usually also available. First option is almost useless because
design specific PLI modeling is impossible. Second option
slows down simulation to the point that compiled simulators
are slower than interpreted simulators. Because interpreted
simulators allow dynamic changes to scheduler, invasive PLI
modeling and checking using C code has no additional cost.

Compiled simulators are able to load and execute sepa-
rate device models (such as commercial RAM or processor
models) at full compiled speed because the model does not
interact with rest of Verilog design except through its own
module I/O ports.

2.5 SDF (Standard Delay Format) Delay
Annotation Inconvenient

For accurate gate delay simulation, delays are set using a
system task that is called after start of simulation (usually at
time 0) by calling $sdf_annotate system task. Interpreted
simulators allow SDF annotation at any time and selection
of particular SDF file to use for annotation or selection of
type of min:typ:max delay to use. Compiled simulators re-
quire SDF file to be specified before compilation.

2.6 Simulation Speed Interpreter
Disadvantage

Currently compiled simulators are faster than interpreted
simulators. Speed advantage is largest for RTL models and
smallest for gate level models. Interpreted simulation is
speed competitive in gate level simulation area probably
because primitive operations are more complex. It is be-
lieved that Verilog XL can be as much as two times faster
than compiled simulation for some gate level designs. It is
possible compiler speed advantage can be explained by fact
that most performance improvement effort since mid 1990s

has been applied to compilers and almost no effort to inter-
preters.

3. DESIGN OF VERILOG VM

A Verilog VM has recently been added to our commer-
cial statement called Cver. It is intended to correspond to
the GNU C compiler -O option. Just as with GNU C -O,
only difference is lack of debugger statement break point
locality. When -O option is used, just before start of sim-
ulation, Cver’s statement level directly interpreted internal
representation is compiled to VM code. To preserve all fea-
tures of Cver interpreter, the optimizer is incremental, i.e.
when a Verilog statement or PLI operation is invoked which
changes the circuit model, the internal high level representa-
tion is first changed and then all changed Verilog constructs
are recompiled to VM code. Following Verilog XL, Cver
reads and elaborates even the largest designs in less than 10
seconds of CPU time. For ease of use, VM compilation time
must not increase by more than two times.

3.1 Memory Minimization Design Decision

Cver was originally developed to provide accurate P1364
simulation and to be as memory efficient as possible. From
discussions with customers, it appears that Cver uses 1/6 (15
to 20 percent) of the memory of the other full P1364 com-
mercial simulators at the cost of simulation speed around
three times slower than the market leading simulators for
large commercial designs.

Cver memory requirement reduction comes from design
decision to not flatten designs before simulation. Flattening
is equivalent to full inlining of instance tree. Cver then ac-
cesses nets from the correct instance by accessing value of
net by adding instance number to per module base address.
The extra based access indirection is not believed to be a
major performance problem, but the extra I/O port assigns
from lack of flattening is a major performance problem. We
believe that non flattening performance loss can be removed
by future selective inlining at the cost of some of the current
memory use advantage.

3.2 Need for Lower Level VM Optimization

Commercial Verilog simulators are extremely complex and
highly optimized programs. Even the slowest simulator is
hundreds of times faster than any naive implementation.
Even one linear algorithm involving the scheduler or value
change propagation causes unacceptably slow performance.
The -O option is needed because further speed improvement
from execution frequency analysis and algorithm improve-
ment is no longer possible.

3.3 Gnu Profiler Statement Interpreter
Routine Call Frequencies

As one might expect from an implementation that di-
rectly interprets statements, the most serious speed problem
involves expression evaluation and execution of procedural
Verilog statements. The following Gnu profiler (gprof com-
mand) measurements show the problem. Notice some GNU
profiler output fields have been omitted from table. The
routine frequencies are from the procedural RTL cpu model
from the DA Solutions benchmarks (Hillawi[1996]) with the
new VM code optimizer off. The frequencies and times are
for a a 700 MHZ Pentium 3.

Table 1: non -O gprof output table

Percent | Self Sec Calls Routine
23.98 13.57 232304258 | __eval2_xpr
21.17 11.98 84768330 | eval_binary
10.44 5.91 49965430 | __1d_wire_val
10.09 5.71 63053067 | push_bsel
8.78 4.97 80948048 | __comp_ndx
4.47 2.53 1634302 exec_stmts
3.25 1.84 33694860 | __exec2 proc_assign
1.96 1.11 17884822 | __st_bit
1.91 1.08 33580392 | __eval_assign rhsexpr
1.82 1.03 38145504 | __lhsbsel
1.77 1.00 17884822 | __assign_to_bit
1.01 0.57 13644617 | _st_val
1.01 0.57 9432782 st_vecval
0.94 0.53 8187767 for_not_done
0.87 0.49 4896409 | __chg st_val
0.64 0.36 385768 move_time

The first five routines are part of the interpreter’s stack
based expression evaluator. Pushing and popping of the
complex expression stack are inlined with macros so they
do not show up directly in measurements. The expression
stack is complicated because stack elements are pointers to
storage areas which can be up to 1 million bits wide. About
64K, four byte words are required to store largest possi-
ble 1 million bit Verilog vector because two bits are needed
for each bit. The next few routines are mostly statement
interpreter overhead routines. The move_time routine ma-
nipulates the event queue so it can not be optimized away
using VM instruction generation.

4. VERILOG VM DEFINITION

Verilog VM uses direct threaded interpretation method
defined in Klint[1981]. It is not exactly same as direct
threaded method because instructions are written in C and
because operand pointers follow direct threaded routine ad-
dresses in VM instruction stream. Each C function imple-
menting a VM instruct executes a normal C return when
done.

Instructions are executed by calling the instruction’s di-
rect threaded C function. There is a global program counter
(PC) called __codp that points to the current VM instruc-
tion. Jump operations are implemented by setting the next
instruction pointer (PC) to one before the jump destination.
Each VM instruction is defined as a no argument void re-
turning C routine. The VM instructions are compiled during
simulator binary compilation with GNU C compiler -fomit-
frame-pointer option to reduce overhead from C function
return. Use of classical method large switch statement or
GNU C compiler non standard computed gotos showed sig-
nificantly worse performance.

VM instruction operands are pointers to arguments or
argument table base addresses for values in multiply instan-
tiated instances. The VM is not a stack machine because
measurements showed that stack pushing and popping of
Verilog’s very wide operands was main unneeded computa-
tion during expression evaluation.

4.1 Instruction Format

Each instruction contains a pointer to a C procedure to
implement the virtual operation and up to four arguments
that are usually operand address pointers but can contain
literal values or pointers to parts of the very complex Verilog
net list or simulation state data structures. A more space
efficient method where variable number of operands follows
each VM instruction is not currently used. Because VM code
rarely adds more than 5 or 10 percent to memory require-
ments, this inefficient implementation does not add much
overhead. It is used for now because it simplifies debug-
ging and incremental recompilation. One can consider the
instruction format as if the following four operand structure
were cast onto the address of each direct threaded operation
routine pointer.

The VM only has a few registers to store state such as the
threaded code interpretation loop PC and some registers to
keep global values such as old edge value or current event
address used as globals across edge detection instructions.
There is one temporary work register called __tmpi that
is always assumed to store bit or memory index by select
instructions.

Because VM accesses variable locations and net list in-
formation from data structures it shares with statement in-
terpreter, generated VM instruction area rarely adds more
than 10% to simulation memory requirements.

4.2 Execution Loop

It is well known (see for example Proebsting[1986]) that
the main limiting factor for direct threaded execution speed
is efficiency of VM instruction processing code. Our VM
uses the following instruction execution loop:

while (__codp->proc != NULL)

(*--codp->proc)();
--codp++;
}

A threaded operation pointer to NULL causes exit from VM
execution loop and return to the scheduler. Actual sequence
of operations caused by NULL is: return to scheduler, find
new event, execute event that probably starts by re-entering
VM execution loop to execute next timing free block. The
instruction just before each NULL schedules the delay or
event control event that causes the execution thread to be
activated to continue after the event occurs or time control
has elapsed. For declarative code since there are no event
controls, the NULL operation just acts as jump instruction
back into scheduler.

GNU C compiler generates efficient code for this loop and
it is not obvious how to hand code this inner loop in assem-
bly to improve speed because of the indirect call through
pointer __codp->proc. However, this loop is the limiting
factor for byte code execution and designs with performance
problems can spend 40% of the simulation time in this loop.
For declarative gate level circuits, especially flattened gate
level designs where Cver interpreter speed is already com-
petitive, there is currently almost no speed improvement
because faster expression evaluation and port assignments
are canceled by interpreter loop overhead.

4.3 Example of VM Instruction Complexity

Even simple operations are complex in Verilog. The fol-
lowing instruction assigns a non strength scalar to another
non strength scalar that appears on the right hand side of
some expression. Most of the complexity is caused by need
to record the change for change propagation processing us-
ing the two level change processing algorithm that matches
Verilog XL.
extern void __to_isb_chg_from_b(void)

{
register byte dbp, bv;
register struct net_t *np;

dbp = &(__codp->opl.bp[__inum]);
bv = __codp->op2.bp|[0] & 3;

if (bv == *dbp) return;

*dbp = bv;

np = (struct net_t *) __codp->op4.bp;
np->decl_iops->iop_chgil = -1;
_record_np = np;
(*np->decl_iops->record_iop)();

}

The __TO_ISB_CHG_FROM_B VM instruction imple-
ments procedural Verilog scalar assign for case where com-
plex right hand side scalar has already been evaluated into
a scalar temporary. Change check is needed because if value

changes, event driven scheduling algorithm propagates changes

to all constructs with scalar b on right hand side. The type
of recording is determined by the net, not the instruction, so
one of the about 20 different declarative record VM routines
is called from within the instruction.

The record_iop routine is complex. It must check for
previous change during same time step. If not, it must add
scalar net to two level queue change list, then possibly set up
end of time slot variable dump for wave form viewer, and,
in addition, it performs recording mechanism book keep-
ing. Because the record_iop routine is complex, there was
no performance gain for alternative VM where many differ-
ent __TO_ISB_CHG_FROM_B instructions were defined
each of which inline one record_iop routine. Notice in a
programming language this operation would compile to one
CPU instruction but for Verilog compilation requires 50 to
100 instructions.

4.4 VM Instruction Operand Access

Because from 15 to 40 percent of the execution time of un-
derlying CPU is spent inside direct threaded code execution
loop, operands are accessed from VM direct threaded rou-
tine instruction stream. The need for complex operations
in direct threaded interpreters is well known (see Proebst-
ing[1995] or Ertl[2002]). Super operations that both load
operands and execute operation reduce number of instruc-
tions executed minimizing time spent in VM instruction
execution loop. If a stack machine were used with sepa-
rate VM instructions, four or more instructions would be
needed: One to load each operand, One to execute opera-
tion, and one to store result. This organization results in
a VM with a very large number of instructions. Currently
VM has around 1000 instructions, but recent measurements
suggest more super instructions are needed. On average
each assignment and Verilog operator (”bit reducing and”
for example) has four or five operand variants where C code
implementing the operation is identical except for location

from which operands are accessed. Therefore, actual Verilog
VM has from 150 to 200 basic instruction types.

There are three temporary storage areas that are used
as VM scratch pad storage. One area is used for vectors
packed into chunks with an ”a” part storing 0 or 1 and a
”b” part storing x or z. Storage format is required by the
P1364 LRM. The smallest non strength non scalar value
requires eight bytes. Another area stores real temporary
values. There is also an area for scalar and strength model
vectors. Strength and scalar values require one byte for each
value because a strength value requires 256 different values
to store ”0” strength component, ”1” strength component
and value. Temporary names are assigned during VM in-
struction generation. Scratch pad storage is allocated and
temporary names are assigned to underlying CPU memory
locations just before start of simulation. The scratch pad
area can be quite large because Verilog expressions are com-
plex and allow concatenates and because Verilog features
involving scheduling and value change propagation require
temporaries to retain value between VM instructions. Even
when very large vectors are not needed, the scratch pad area
usually will still require a few hundred words.

Because Cver uses per module VM instruction stream in-
terpretation for which variables are accessed using base ad-
dress plus instance index offset, each operand can have one
of three forms:

1. Direct access where only one instance of module exists
or to access scratch pad temporary.

2. Instance specific access where operand contains base
of storage and indexed address is used to access cor-
rect value from the current instance VM state index
register. The same index register is used by the non
VM interpreter.

3. Hierarchical reference (usually called cross module ref-
erence or XMR)) access. Most expression operators do
not have VM instructions that access XMR operands.
For XMR operands, an instruction to load the XMR
value into a temporary is first executed and then the
form of the expression operator that uses the pointer
form occurs. There are still so many different types of
XMRs that about 100 assign (copy) instructions are
needed to load and store XMRs.

4.5 VM Instruction Types

The VM contains around 1000 instructions. About 450
instructions are needed to implement the 50 or so Verilog
unary and binary operators. Large number of Instructions
is needed because each VM instruction directly accesses its
operands. By using on average nine variants for each oper-
ator, only one instruction is usually needed for common one
binary operation assignment.

Super operator or super instruction generation is usually
implemented dynamically (see Ertl[2002] for example), but
here super operators are designed into VM resulting in VM
with over 1000 instructions but most of the instructions are
simple variants of basic patterns so scripts have been used
to assist with VM instruction implementation. New instruc-
tions (variant super operators that combine what previously
were multiple instructions into one) are added from per-
formance measurements usually when new styles of Verilog
designs are encountered. Currently most pressing need for

more super instructions is in I/O port assignment and con-
stant bit select areas.
Binary Verilog operators require the most duplicated VM

instructions because binary operators require three operands:

result, first operand, and second operand. Therefore most
operands require 12 VM instructions for what is one ba-
sic operation pattern. Operations for with both signed and
unsigned variants require even more VM instructions.

There are eight instructions for each of the normal addi-
tion operands that fit in one word. Either pointer or instance
specific form are needed for each of the three operands.
There are four instructions for wider than 32 bits form of
plus where VM instruction must handle carry propagation.
The are only four variants instead of eight because the re-
sult of a wide operator must end up in pointer locations
(usually a scratch pad temporary) because of some subtle
properties of storing wide a/b values. Because of Verilog’s
four value per bit representation, the plus operation that
fits in one word still needs nine lines of C code. Some of
the more complicated bit reducing Verilog binary operators
require 15 or 20 lines of C. Although there are many oper-
ation variants, the C code to implement each is similar to
the extent that variants were mostly generated and checked
using Perl scripts.

There are about 340 value assignment instructions. Most
of these are required by the complex nature of Verilog as-
signments. There are many complex rules for size change
and sign removal assignments in Verilog. There are also bit
selects, array selects, part selects, and simple assignments.
Each of which can appear on the left hand side or the right
hand side. Also there are many assignment variants that dif-
fer depending on type of change processing needed. About
100 of 340 instructions are related to the various types of
XMR load and store assignments. Another 50 are needed
to pack and unpack Verilog memories because memories are
packed to the bit.

About 20 VM assign instructions are needed to handle
force and release processing. If elaboration time source anal-
ysis determines that a variable can be forced, a special VM
instruction that jumps over the assignment VM instructions
when force is active is generated. The incremental compiler
regenerates VM instructions for newly forced variables dur-
ing simulation.

The advantage of so many VM instructions is that all sim-
ple assignments of the form "V = V”,”V = C”, ”V[constant
index] = V”, ?V = V[constant index]”, ” V[range:range] =
V”,”V = V][range:range]” only require one VM instruction.
In the above patterns, V stands for variable, C for con-
stant, ” constant index” is any constant bit select index, and
range is the constant part select end of range index. Also,
all assignments to simple variables with only one binary or
unary operand on the right hand side require just one VM
instruction. Similarly, wide forms usually require only two
instructions because usually wide values must be stored into
a scratch pad temporary before being stored into assignment
location.

4.6 Control Flow VM Instructions

The other 200 instructions usually do not have operand
difference variants. Some implement normal VM control
flow and condition testing operations. There are a few in-
structions for implementing Verilog case statements. Verilog
case statements are complicated compared to C switch state-

ments because of the various matching rules for unknown (x)
and undriven (z) values. Jump tables can still be used for
”don’t care” case statements.

There are usually two or three VM instructions for each
procedural delay control end of timing free block schedule
type. The event and delay control schedule instructions also
set the schedule event fields that cause event activation to
execute the right VM instruction. Finally, there is usually
only one instruction to implement each of the rare special
case Verilog statements such as cause or disable.

4.7 Value Change Propagation VM
Mechanism

There are instructions for recording and propagating declar-
ative and procedural value changes. The VM instructions
are kept in a separate instruction stream table for each
net. Change propagation instructions are mostly conditional
jumps used to filter out non matching instances or edges.
There are some instructions for skipping PLI operations be-
cause PLI supports both registering and removing callbacks
and the incremental compiler tries to generate the smallest
possible change for call back removal.

The C program run time stack is used to store context for
change recording. When either procedural or wire changes
are propagated (front side of scheduler change processing),
one special pseudo VM instruction is executed. Most vari-
ants of this one instruction are quite complex (about 40 lines
of C code). They use the CPU’s local variable run time stack
to store both VM context and simulator state context and
then recursively execute a temporary second copy of VM
execution loop. This works because propagate VM instruc-
tions never suspend back to the scheduler until all processing
is completed. Suspension in this case is back to the special
pseudo VM instruction which restores VM state and then
returns to scheduler.

This is not an elegant solution and violates the concept
of ”real” VM but we have not found a way to store context
that is nearly as fast. The mechanism will not map easily
if in the future a native CPU instruction compiler is imple-
mented. Another advantage of this ”pseudo” VM is that
except for some rare cases, the incremental compiler only
needs to regenerate VM instructions for the effected net.

4.8 Reason For Change Propagation
Complexity

A consequence of the requirement that procedural and
declarative constructs behave identically causes a need for
different change propagation for registers and wires. Reg-
ister change propagation must be immediate or events that
are set to trigger on edge changes are missed. These differ-
ences lead to many more change VM instructions and cause
need for recursive VM execution loop.

The following Verilog code activated on clock edges shows
why procedural edge changes must be processed immedi-
ately.

always begin
#10 active = 0; active = 1; active = 0;
#10 ;
end
initial begin
@(posedge active) ;
. more statements ...

end

Although this is not explicitly defined in the P1364 standard
LRM, if procedural register variable change processing is not
executed immediately, when the first block suspends, active
will be 0 so the second block will not see a positive edge, but
a positive edge occurred during first block execution. The
requirement that change processing for procedural code run
immediately insures that the statement setting active to 1
will schedule the positive edge event control activation in
the second block.

In contrast, declarative wire change propagation must use
the two stage event queue algorithm defined by the LRM.
The two stage event processing algorithm works by first pro-
cessing all events for the current time. All wire changes
and events scheduled during the current time for the cur-
rent time are saved on the second stage list. When current
event queue is empty, the second stage saved change list is
made the current active queue and processed. This two stage
process continues until the current event queue and change
list are completed and next change list and event queues are
empty. This is complicated but by convention Verilog sim-
ulations must use the two stage event queue algorithms or
other parts of design flows will fail.

5. THE VM COMPILER

Because a production Verilog compiler front end already
existed, non optimized instruction generation was not dif-
ficult. However, since Verilog XL is fast and optimized to
the extent that many routines are hand coded in assembly,
the full mechanism of an optimizing code generator needed
to be implemented. First, the internal statement level data
structure is traversed and three address tuples are generated
(see Aho[1986], pp. 466-473 for discussion of three address
tuples). Three address tuples are then optimized and pro-
cessed so that for each three address tuple exactly one VM
instruction is generated. VM instruction generation is then
easy because of the one to one property. Final VM instruc-
tions generation finds VM instruction that matches the three
address tuple’s operands.

5.1 Basic Three Address Tuple Generation

There are separate three address tuples for labels and
for jumps that are connected using the data structure de-
scribed in Wulf[1975], pp. 108-115. Three address tuples
are generated using a pattern matching technique similar
to the one used in the original Bell Labs Unix C compiler
(Ritchie[1979]). Except here VM tables are represented as
patterns coded in C functions where routines are called se-
quentially to match the various operand patterns. Difference
is required because there is no obvious complexity order rela-
tion for Verilog operand pattern types and because full com-
puter program conditional statement computation power is
need for matching some special cases. The three address
tuple fields are first filled (filling may cause some subex-
pression three address tuples to be generated) then pattern
describing location result ends up in is used for VM instruc-
tion generation matching. For example, field FT_XWChg
describes a wider than 32 bit left hand side hierarchical ref-
erence that requires change propagation. It is one of the
most complex patterns and can require three or four, tuples
depending on right hand side field pattern properties.

During three address tuple generation, timing free regions

are indicated by doubly linking start tuple addresses and
statement data structure addresses. A time free region is
a sequence of variable statements that do not require any
scheduling activity. End of each timing free block has a sus-
pend tuple that later will become a VM instruction with
proc field NULL. Conventional programming language ba-
sic blocks are not computed and optimized because loops
that do not contain timing controls are rare. VM optimizer
works on each timing free region in turn. No state informa-
tion from different timing free blocks can be saved because
suspend into scheduler may result in the following timing
free region disappearing since it may need to be recompiled
by the incremental compiler before scheduler returns to the
"next” timing free block.

5.2 Tuple Optimization

First phase of optimizer inserts copy tuples when VM in-
structions with needed operand patterns do not exist. Al-
though LRM allows optimizer to reorder computation in
timing free blocks, some Verilog XL conventions must be
followed or legacy Verilog models will not function correctly.
Final step is to apply a number of optimizations recursively
until no more progress can be made. Some optimizations
are: removal of jump to next, jump to jump, unreachable
code, and conversion of sequences of three address tuples to
simpler sequence (usually to one tuple) using pattern match-
ing tables to locate the sequences. The sequences are de-
termined from measurements of VM instruction frequencies
and then used to build the patterns by hand.

The incremental compiler works by determining which
timing free regions and net propagation streams need to
be regenerated, frees the old VM instruction areas, runs
the normal compiler to generate new three address tuples
for the changed constructs, optimizes the tuples, and finally
generates new VM instructions and adjusts scheduler point-
ers so that the event processor executes new VM code. It
is possible for a PLI change such as adding a change call
back to a variable used as a left hand side hierarchical ref-
erence to require VM instruction regeneration in many dif-
ferent modules, but such cases are rare. Usually, invasive
internal circuit representation change from debugger, PLI,
or SDF annotation calls just require regeneration of declar-
ative propagation tuples for effected nets.

6. SPEED IMPROVEMENT RESULTS

Currently, best possible VM execution speed improvement
for procedural code with complex expressions and no time
movement is 10 times (nominal 100 seconds to 10), but cur-
rently most procedural designs run slightly better than two
times faster (nominal 100 seconds to 45). Some circuits such
as flat gate level designs show no speed improvement when
-O option is used because speed improvements from faster
I/0 port assign execution is balanced by overhead from VM
instruction execution loop.

The measurements presented here are between Cver state-
ment interpreter and Cver VM execution. All measurements
were made on a medium speed X86 Pentium 3. Relative
measurements are same for other X86 architectures such as
Sparc, Power PC, and PA-Risc.

6.1 GNU Profiler Compiled Simulation
Routine Call Frequencies

Table 2: rtl cpu model gprof -O output

Percent | Self Sec Calls Routine
17.21 4.58 1634302 | exec_iops
12.81 3.41 97722930 | __to_tmpi_from lh rng w
9.65 2.57 49040952 | __to_w_from wide_bsel
9.13 2.43 90237793 | __iop_jump
6.76 1.80 80195348 | __iop_tmpi minusl_jump
6.01 1.60 19639630 | __iop_booland_p_p_p
4.43 1.18 14771823 | __iop_boolor_p_p.p
3.87 1.03 21767850 | __iop_minus_p_p_p
3.38 0.90 17188236 | __iop_relne p_p p
3.19 0.85 14787960 | __to_wide_bsel _from_w
2.25 0.60 13977834 | __to_w_from_w_bsel
1.69 0.45 7658199 | __iop_sign_relgt p_p.p
1.54 0.41 10523346 | __iop_condf_jump
1.50 0.40 11484708 | __to_w_from_b
1.43 0.38 385768 | move_time
1.01 0.27 2860920 | exec_decl_iops
0.90 0.24 7041648 | __pop-itstk

The following table gives GNU profiler routine call fre-
quency measurements for the DA Solutions procedural RTL
circuit discussed above with VM optimizer -O option on.
The results show that all the expression and statement eval-
uation interpreter overhead has been removed at the cost of
17% of time spent in VM instruction execution loop. Simu-
lation time is reduced to 45% of the previous time (nominal
100 seconds to 45).

Except for VM instruction execution overhead, jump VM
instruction, and some Verilog binary operators; high fre-
quency routines are those used to evaluate bit selects and
if statements. These constructs along with I/O port as-
signments are most frequently executed VM instructions for
many designs, and also the most serious current VM com-
piler code quality problem areas. Still many large industrial
designs show two times speed up (nominal 100 seconds to
50). This RTL CPU model has low cross I/O port informa-
tion flow so the I/O port assign code quality problem does
not show up until the __pop_itstk routine at the bottom of
the table. Also inherent value change and event scheduler
simulation overhead routines (see bottom three table lines)
that can never be eliminated by VM instruction execution,
take only a few percent of total execution time. The very
high frequency of the unconditional jump VM instruction is
surprising and we are currently investigating its cause.

7. CONCLUSIONS AND FUTURE WORK

The new Verilog VM execution optimizer is extremely suc-
cessful and has the following advantages:

1. VM Verilog execution has proven to be very conve-
nient. VM and compiler development is much eas-
ier than expected. Debugging, measuring to improve
compiler quality, and tracing features have been sur-
prisingly easy to add.

2. Results exactly match current commercial quality in-
terpreter.

3. Feature preserves all the advantages of Verilog XL style
statement interpreter.

4. Features offers promise of closely approaching com-
piled to machine code simulation speed.

5. Speed improvement is usually two times (nominal 100
seconds to 50) which is getting close to three times
(nominal 100 seconds to 33) speed up that a customer
suggested would make Cver speed competitive with
other simulators.

Previously Cver speed improvement had run into a wall.
Either new speed improvement ideas did not increase sim-
ulation speed, or idea improved speed for some models but
slowed down others. VM compiler still needs much work
but each simple improvement has resulted in a few percent-
age points of speed improvement. Currently we are working
on improving three address tuple code quality by adding
expression optimizer used before three address tuples are
generated and by adding more super operators where only
one instruction is needed for common constant bit select and
I/0 port assignments.

Main current three address tuple code quality problem
area is inefficient I/O port continuous assignment tuples,
extra tuples for accessing constant bit and memory selects,
and inefficient if statement condition test tuples. For very
common scalar port source assign to constant bit select port
sink where the two problem areas occur together, currently
four or five tuples are generated but only one is needed.
For if statements, currently tuples are generated to evaluate
condition expression, then to convert expression result to
logical value, then the conditional jump tuple is generated.

Least successful aspect of project is lack of gate level sim-
ulation speed improvement. Flat gate level circuits often do
not speed up at all. There is some evidence that Cver unop-
timized interpreter’s gate level performance is about as fast
as the fastest simulators, so maybe result is not surprising.

Other problem that is also not surprising is that speed im-
provements are limited by Amhdahl’s law (Amdahl[1967]).
Namely, designs that require complex scheduling or accu-
rate path delay declarative simulation show limited speed
up because even if expression evaluation, change processing,
and port assignment time is reduce to 0, those tasks require
only 25 to 33 percent of total simulation time. Best pos-
sible improvement without discovering better algorithms is
reduction of time from by one third (nominal 100 seconds
to 67).

Next phase will involve adding more complex optimiza-
tions such as adding operator reordering expression opti-
mizer, adding optimizer to reuse common subexpressions in
timing free blocks, optimizing conditional jumps, and adding
some instance inlining especially for leaf instances. In the
longer run, it should be possible to write program to map
VM instructions to native machine instructions at the cost
of portability and some flexibility.

In the future, interpreter ease of development may allow
discovery of more complex but orders of magnitude faster
simulation algorithms that preserve current behavior but use
better data structures or algorithms. See (Lawler[1976]) for
discussion of matroids that may be one such data structure.

Interpreted VM Verilog simulation has proven to have so
many advantages that we believe in future all full P1364
accurate delay Verilog simulators will be interpreters. Main
current challenge is development of better compilation and
VM implementation techniques to increase simulation speed.
It is also possible future computer architectures will allow

more efficient VM instruction execution.

8. REFERENCES

Aho[1986] Aho, A., Sethi, R., and Ullman, J. Compilers:
Principles, Techniques, and Tools. Addison Wesley,
Reading, 1986.

Allen[2002] Allen, R., and Kennedy, K. Optimizing Com-
pilers for Modern Architectures. Academic Press, Lon-
don, 2002.

Almasi[2002] Almasi, G., and Padua, D. MaJIC: compil-
ing MATLAB for speed and responsiveness. Proceed-
ing ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’02), 2002,
294-303,

Amdahl[1967] Amdahl, G. Validity of the Single-Processor
Approach to Achieving Large-Scale Computational Ca-
pabilities. FIPS Conference Proceedings, AFIPS Press,
1967, 483.

Becker[1996] Becker, M. Faster Verilog simulation using
a cycle based programming methodology. Proceedings
1st International Verilog HDL Conference, 1996, 24-
31.

Bell[1973] Bell, J. R. Threaded code. Communications of
the ACM, 16(6), 1973, 370-372.

Cadence[1997] Cadence Design. Verilog XL and Verilog
NC Reference Manuals. Cadence Design Systems, 1997.

Earley[1975] Earley, J. High level iterators and a method
for automatically designing data structure representa-
tion. Computer Languages vol. 1, 1975, 321-342.

Ertl[2001] Ertl, M. A., and Gregg, D. The behavior of ef-
ficient virtual machine interpreters on modern archi-
tectures. ILNCS-2150 Euro-Par 2001, 2001, 403-412.

Ertl[2002] Ertl, M. A.; Gregg, D. Krall, A.; and Paysan, D.
Vmgen—A generator of efficient virtual machine inter-
preters. Software—Practice and Experience. vol.

32(12), 2002, 265-294.

Ertl[2002b] Ertl, M. Threaded code variations and opti-
mizations. Forth-Tagung 2002, 2002.

IEEE[1996] IEEE Standards Board. IEEE Std 1364-1995
Verilog Hardware Description Language Reference Man-
ual. IEEE, New York, 1996.

Hillawi[1996] hillawi, J. DA Solutions Public Domain Bench-
marks. Unpublished, Available at URL:
http://www.pragmatic-c.com, 1996.

Jennings[2000] Jennings, J., and Beuscher, B. Verischemelog:

verilog embedded in scheme. SIGPLAN Notices vol

95(12), 2002, 123-134.

Krall[1993] Krall, A. and Berger, T. An executable inter-
mediate representation for incremental global compi-
lation of prolog. Technische Universitaet Wien, 1993.

Lawler[1976] Combinatorial Optimization: Networks and
Matroids. Holt Rinehard, and Winston, New York,
1976.

Leroy[1990] Leroy, X. The zinc experiment: An economi-
cal implementation of the ML language. INRIA Tech-
nical Report, 1990, 117.

Lindholm[1999] Lindholm, T. and Yellin, F, The Java
Virtual Machine Specification, Second Edition. Ad-
dison Wesley, New York, 1999.

Klint[1981] Klint, P. Interpretation Techniques. Software—
Practice and Ezperience, vol. 11(10), 1981, 963-973.

Meyer[1988] Meyer, S. J. A data structure for circuit net
lists. Proceedings 25th Design Automation Conference.
IEEE, 1988, 613-616.

Moorby[1989] Morby, P. and Bryant, R. The Verilog HDL.
Kaufman, New York, 1989.

Morgan[1998] Morgan, R. Building an Optimizing Com-
piler. Butterworth-Heinemann, Boston, 1998.

Nagel[1975] Nagel, L. SPICE2: a computer program to
simulate semiconductor circuits. University of Califor-
nia, Berkeley, ERL-520, 1975.

Proebsting[1995] Proebsting, T. A. Optimizing an ANSI
C interpreter with superoperators. ACM SIGPLAN
Principles of Programming Languages (POPL ’95). 22-
332, 1995.

Ritchie[1972] Ritchie, D. A tour through the Unix C Com-
piler. in Uniz Seventh Edition Manual. Bell Labora-
tories, 1979.

Weigang[1985] Weigang, J. An Introduction to SSC’s APL
Compiler. APL Quote Quad vol. 15(4), 1985.

Wulf[1975] Wulf, W., Johnsson, R.K., Weinstock, C.B.,
Hobbs, S.0., and Geschke, C.M. The Design of an
Optimizing Compiler. American Elsevier. New York,
1975.

